Montgomery Field Arithmetic#
A verified Montgomery field arithmetic library.
HACL Packages comes with two versions, a 32-bit optimized version, where bignums are represented as an array of len
unsigned 32-bit integers, i.e., uint32_t[len]
and a 64-bit optimized version.
All the arithmetic operations are performed in the Montgomery domain and preserve the invariant that aM < n
for a bignum aM
in Montgomery form.
Available Implementations#
#include "Hacl_GenericField32.h"
#include "Hacl_GenericField64.h"
API Reference#
Typedefs#
Functions#
-
bool Hacl_GenericField32_field_modulus_check(uint32_t len, uint32_t *n)#
Check whether this library will work for a modulus
n
.The function returns false if any of the following preconditions are violated, true otherwise. • n % 2 = 1 • 1 < n
-
Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *Hacl_GenericField32_field_init(uint32_t len, uint32_t *n)#
Heap-allocate and initialize a montgomery context.
The argument n is meant to be
len
limbs in size, i.e. uint32_t[len].Before calling this function, the caller will need to ensure that the following preconditions are observed. • n % 2 = 1 • 1 < n
The caller will need to call Hacl_GenericField32_field_free on the return value to avoid memory leaks.
-
void Hacl_GenericField32_field_free(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k)#
Deallocate the memory previously allocated by Hacl_GenericField32_field_init.
The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.
-
uint32_t Hacl_GenericField32_field_get_len(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k)#
Return the size of a modulus
n
in limbs.The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.
-
void Hacl_GenericField32_to_field(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *a, uint32_t *aM)#
Convert a bignum from the regular representation to the Montgomery representation.
Write
a * R mod n
inaM
.The argument a and the outparam aM are meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.
-
void Hacl_GenericField32_from_field(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *aM, uint32_t *a)#
Convert a result back from the Montgomery representation to the regular representation.
Write
aM / R mod n
ina
, i.e. Hacl_GenericField32_from_field(k, Hacl_GenericField32_to_field(k, a)) == a % nThe argument aM and the outparam a are meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.
-
void Hacl_GenericField32_add(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *aM, uint32_t *bM, uint32_t *cM)#
Write
aM + bM mod n
incM
.The arguments aM, bM, and the outparam cM are meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.
-
void Hacl_GenericField32_sub(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *aM, uint32_t *bM, uint32_t *cM)#
Write
aM - bM mod n
tocM
.The arguments aM, bM, and the outparam cM are meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.
-
void Hacl_GenericField32_mul(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *aM, uint32_t *bM, uint32_t *cM)#
Write
aM * bM mod n
incM
.The arguments aM, bM, and the outparam cM are meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.
-
void Hacl_GenericField32_sqr(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *aM, uint32_t *cM)#
Write
aM * aM mod n
incM
.The argument aM and the outparam cM are meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.
-
void Hacl_GenericField32_one(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *oneM)#
Convert a bignum
one
to its Montgomery representation.The outparam oneM is meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.
-
void Hacl_GenericField32_exp_consttime(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *aM, uint32_t bBits, uint32_t *b, uint32_t *resM)#
Write
aM ^ b mod n
inresM
.The argument aM and the outparam resM are meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.The argument b is a bignum of any size, and bBits is an upper bound on the number of significant bits of b. A tighter bound results in faster execution time. When in doubt, the number of bits for the bignum size is always a safe default, e.g. if b is a 256-bit bignum, bBits should be 256.
This function is constant-time over its argument b, at the cost of a slower execution time than exp_vartime.
Before calling this function, the caller will need to ensure that the following precondition is observed. • b < pow2 bBits
-
void Hacl_GenericField32_exp_vartime(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *aM, uint32_t bBits, uint32_t *b, uint32_t *resM)#
Write
aM ^ b mod n
inresM
.The argument aM and the outparam resM are meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.The argument b is a bignum of any size, and bBits is an upper bound on the number of significant bits of b. A tighter bound results in faster execution time. When in doubt, the number of bits for the bignum size is always a safe default, e.g. if b is a 256-bit bignum, bBits should be 256.
The function is NOT constant-time on the argument b. See the exp_consttime function for constant-time variant.
Before calling this function, the caller will need to ensure that the following precondition is observed. • b < pow2 bBits
-
void Hacl_GenericField32_inverse(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u32 *k, uint32_t *aM, uint32_t *aInvM)#
Write
aM ^ (-1) mod n
inaInvM
.The argument aM and the outparam aInvM are meant to be
len
limbs in size, i.e. uint32_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField32_field_init.Before calling this function, the caller will need to ensure that the following preconditions are observed. • n is a prime • 0 < aM
-
bool Hacl_GenericField64_field_modulus_check(uint32_t len, uint64_t *n)#
Check whether this library will work for a modulus
n
.The function returns false if any of the following preconditions are violated, true otherwise. • n % 2 = 1 • 1 < n
-
Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *Hacl_GenericField64_field_init(uint32_t len, uint64_t *n)#
Heap-allocate and initialize a montgomery context.
The argument n is meant to be
len
limbs in size, i.e. uint64_t[len].Before calling this function, the caller will need to ensure that the following preconditions are observed. • n % 2 = 1 • 1 < n
The caller will need to call Hacl_GenericField64_field_free on the return value to avoid memory leaks.
-
void Hacl_GenericField64_field_free(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k)#
Deallocate the memory previously allocated by Hacl_GenericField64_field_init.
The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.
-
uint32_t Hacl_GenericField64_field_get_len(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k)#
Return the size of a modulus
n
in limbs.The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.
-
void Hacl_GenericField64_to_field(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *a, uint64_t *aM)#
Convert a bignum from the regular representation to the Montgomery representation.
Write
a * R mod n
inaM
.The argument a and the outparam aM are meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.
-
void Hacl_GenericField64_from_field(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *aM, uint64_t *a)#
Convert a result back from the Montgomery representation to the regular representation.
Write
aM / R mod n
ina
, i.e. Hacl_GenericField64_from_field(k, Hacl_GenericField64_to_field(k, a)) == a % nThe argument aM and the outparam a are meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.
-
void Hacl_GenericField64_add(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *aM, uint64_t *bM, uint64_t *cM)#
Write
aM + bM mod n
incM
.The arguments aM, bM, and the outparam cM are meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.
-
void Hacl_GenericField64_sub(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *aM, uint64_t *bM, uint64_t *cM)#
Write
aM - bM mod n
tocM
.The arguments aM, bM, and the outparam cM are meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.
-
void Hacl_GenericField64_mul(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *aM, uint64_t *bM, uint64_t *cM)#
Write
aM * bM mod n
incM
.The arguments aM, bM, and the outparam cM are meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.
-
void Hacl_GenericField64_sqr(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *aM, uint64_t *cM)#
Write
aM * aM mod n
incM
.The argument aM and the outparam cM are meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.
-
void Hacl_GenericField64_one(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *oneM)#
Convert a bignum
one
to its Montgomery representation.The outparam oneM is meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.
-
void Hacl_GenericField64_exp_consttime(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *aM, uint32_t bBits, uint64_t *b, uint64_t *resM)#
Write
aM ^ b mod n
inresM
.The argument aM and the outparam resM are meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.The argument b is a bignum of any size, and bBits is an upper bound on the number of significant bits of b. A tighter bound results in faster execution time. When in doubt, the number of bits for the bignum size is always a safe default, e.g. if b is a 256-bit bignum, bBits should be 256.
This function is constant-time over its argument b, at the cost of a slower execution time than exp_vartime.
Before calling this function, the caller will need to ensure that the following precondition is observed. • b < pow2 bBits
-
void Hacl_GenericField64_exp_vartime(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *aM, uint32_t bBits, uint64_t *b, uint64_t *resM)#
Write
aM ^ b mod n
inresM
.The argument aM and the outparam resM are meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.The argument b is a bignum of any size, and bBits is an upper bound on the number of significant bits of b. A tighter bound results in faster execution time. When in doubt, the number of bits for the bignum size is always a safe default, e.g. if b is a 256-bit bignum, bBits should be 256.
The function is NOT constant-time on the argument b. See the exp_consttime function for constant-time variant.
Before calling this function, the caller will need to ensure that the following precondition is observed. • b < pow2 bBits
-
void Hacl_GenericField64_inverse(Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 *k, uint64_t *aM, uint64_t *aInvM)#
Write
aM ^ (-1) mod n
inaInvM
.The argument aM and the outparam aInvM are meant to be
len
limbs in size, i.e. uint64_t[len]. The argument k is a montgomery context obtained through Hacl_GenericField64_field_init.Before calling this function, the caller will need to ensure that the following preconditions are observed. • n is a prime • 0 < aM