
Karthikeyan Bhargavan

Joint work with Rolfe Schmidt (Signal), Charlie Jacomme (Inria), Franziskus Kiefer (Cryspen),
Goutam Tamvada (Cryspen), Lucas Franceschino (Cryspen), Jonathan Protzenko (MSR), …

VSTTE 2024, Prague

High Assurance
Post Quantum Cryptography

Formal verification can
speed development and
clarify security of
real world systems.

crypto protocol

crypto algorithm

Authenticated Key Exchange
+

Authenticated Encryption

● Classic protocol design
● Many security proofs
● See e.g. SIGMA [2003]
● Solved Problem?

Creating Secure Channels (SSL 3.0-TLS 1.2)

Diffie-Hellman Key Exchange (1976)

A and B share
secret key K

Diffie-Hellman Security Guarantee

The security of all DH-based protocols relies on a hardness assumption:
An attacker who does not know x or y cannot compute gxy mod p

What can go wrong?

Bad Crypto: Weak Diffie-Hellman Groups

If the prime p is too small,
 an attacker can compute the discrete log:
 y = log(gy mod p)

and hence compute the session key: gxy mod p

Current discrete log computation records:
•[Joux et al. 2005] 431-bit prime
•[Kleinjung et al. 2007] 530-bit prime
•[Bouvier et al. 2014] 596-bit prime
•[Boudot et al. 2019] 795-bit prime

Broken (efficiently
computable) by a

Quantum Computer
[Shor, 1994]

Protocol Flaw: Insecure Negotiation

DH Group
Negotiation

Why support
weak crypto?

backwards
 compatibility, …

Protocol Flaw: Downgrade Attack

Remove all
strong groups

Logjam Attack [2015]:
Downgrade + Break DH-512

Coding Bugs: Cryptographic Computations

Modular Exponentiation, implemented using bignum multiplication
Can sometimes be the most expensive computation on a Web server

Coding Bugs: Textbook Multiplication

Coding Bugs: 256-bit modular multiplication

Coding Bugs: 256-bit modular multiplication

What can go wrong?
● Integer overflow
 (undefined output)
● Buffer overflow/underflow
 (memory error)
● Missing carry steps
 (wrong answer)
● Side-channel Attack
 (leaks secrets)

Coding Bugs: Side-channel attacks

Skipping 0s is faster!
● Fewer additions, carries
 … but leaks information

● Runtime proportional to
number of 1s in 1010

● Attacker can observe
runtime to guess input

● May leak secret key!

Other Coding Bugs: Protocol Code

● Incorrect use of crypto primitives
○ Nonce reuse, public key validation, …

● Parsing cryptographic formats
○ Ambiguities, incorrect parsing,, memory errors, …

● Protocol state machine flaws
○ Authentication bypass, skip crypto operations, …

● Crash or panic
○ Unexpected messages, memory leaks, …

Formal methods can help!

Verified crypto protocol designs
● Symbolic security analysis [ProVerif, Tamarin, DY*]
● Cryptographic proofs of security [CryptoVerif, EasyCrypt, Squirrel]

Verified crypto software
● Verified crypto libraries [F*, Coq, Isabelle, SAW, …]
● Verified protocol code [F*, Dafny, Verus, …]

A new opportunity:
many applications are now
being updated to provide
Post-Quantum security.

Let’s see how this
process worked with the
PQ transition of Signal
Messenger

Analysing and Fixing Post-Quantum Signal

The (Classical) Signal Protocol

Modular design:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4)

DH1 DH2

DH3

DH4

The (Classical) Signal Protocol

Modular design:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4)

DH1 DH2

DH3

DH4

Contingent on Diffie-Hellman
assumptions - quantum fragile!

Harvest Now, Decrypt Later
(HNDL) attacks:

Messages sent today
are vulnerable to
quantum attackers tomorrow

PQXDH Design: Add a PQ-KEM to X3DH

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

Analyzing PQXDH

● PQXDH is a very small addition to X3DH.
● X3DH has been comprehensively analyzed

in a variety of security models
○ Mutual Authentication, Confidentiality,Forward Secrecy

● Is PQXDH as secure as X3DH?
● Is it secure against an HNDL quantumadversary?

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

Formally Specifying PQXDH

Single Message between Two Roles

● Arbitrary number of endpoints
● Any endpoint can play any role
● (Out-of-Band) Identity Key Verification
● Untrusted Key Distribution Server

Specification in Applied Pi Calculus

● Makes all computations precise.
● What is sent on the wire?
● What key encoding do we use?
● What exactly is signed/encrypted?
● How are all the keys derived?

Symbolic Analysis with ProVerif

Security goals as queries

● Secrecy, Authentication:
trace properties

● Indistinguishability, Privacy:
equivalence properties

Fully automated analysis

● Finds attacks and produces traces
● No attack found ⇒

symbolic security theorem
● Might not terminate!

(* Post-Quantum Forward Secrecy Query *)
query A, B, spk, pqpk, sk, i, j;

event(BlakeDone(A,B,spk,pqpk,sk))@i
⇒ not(attacker(sk))
 | (event(LongTermComp(A))@j & j < i)
 | (event(QuantumComp)@j & j < i)

Attack Trace:

1. Using the function info_x25519_sha512_kyber1024 the attacker may obtain
info_x25519_sha512_kyber1024.
attacker(info_x25519_sha512_kyber1024).

2. Using the function zeroes_sha512 the attacker may obtain zeroes_sha512.
attacker(zeroes_sha512).

3. We assume as hypothesis that
attacker(a).

4. We assume as hypothesis that
attacker(b).

5. The message b that the attacker may have by 4 may be received at input {2}.
So the entry identity_pubkeys(b,SMUL(IK_s_2,G)) may be inserted in a table at insert {6}.
table(identity_pubkeys(b,SMUL(IK_s_2,G))).
 …

20. By 19, the attacker may know penc(SMUL(SPKB_s_3,G),ss_1).
Using the function weakECasKEM the attacker may obtain ss_1.
attacker(ss_1).

…

And so on

Game-Based Security Proofs with CryptoVerif

Computational crypto model

● Standard cryptographic assumptions
● User-defined assumptions as equivalences

● Probabilistic polynomial-time adversary

Proof: sequence of game transformations

● Requires some manual guidance
● Machine-checked transformations
● Computes concrete advantage formulas
● Proof failure may indicate attack, no trace

Modeling the Quantum Adversary

Passive Quantum Adversary Model (Harvest-Now-Decrypt-Later)

● Adversary can break DH after the session is over
● PQ primitives (e.g. PQ-KEM) remain secure

Symbolic and Computational Analysis

● ProVerif automatically searches for attacks
that rely on broken primitives

● CryptoVerif checks that the classical game-based proof
still holds against passive quantum attackers
○ Post-quantum sound CryptoVerif and verification of hybrid TLS and SSH

key-exchanges, Blanchet, Jacomme, IEEE CSF 2024

Key Confusion Attack on PQXDH

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

Attacker swaps keys and signatures
to break PQ security of PQXDH

ProVerif finds this attack if:
● the key encodings can collide, and
● public keys are not validated

This is representative of a general class of
cross-protocol attacks between old and new
versions of the same protocol.

Easy Fix: Ensure all key/message/signature
 encodings have disjoint co-domains.

Signal implementation already does this

KEM Re-encapsulation Vulnerability

Robbie

PQPKB
1

Attacker re-encrypts a PQ-KEM ciphersuite for another key to
confuse the recipient and break session independence

Alex

Runs protocol
 …

(CT, SScomp)
 = KEM.Enc(PQPKB

1)
…

send compromised CT.
SScomp =
 KEM.Dec(PQPKB

1, CT)
CTcomp =
 ReEnc(SScomp,PQPKB

2)

PreKeyBundle(...,
PQPKB

1,...)

PQXDHMessage(...,
CT,...)

SScomp PreKeyBundle(...,
PQPKB

2,...)

Blake

PQXDHMessage(...,
CTcomp,...)

Blake completes protocol
with compromised secret:

SScomp =
 KEM.Dec(PQPKB

2, CTcomp)

Re-encapsulation can happen
without violating the usual
IND-CCA assumption for the KEM.

These findings led to a new revision of the PQXDH protocol:

● We required AEAD to be post-quantum IND-CPA and INT-CTXT
● Restricted the ranges of encodings to be disjoint
● Added PQPKB to AD when it isn’t already bound within the KEM

PQXDH Revision and Security Theorems

With these changes we can prove that PQXDH meets its
classical and PQ security requirements in the
symbolic, computational, and HNDL quantum models.

The full process: analysis, fix, proof, new spec took 1 calendar month.

But is the Signal Implementation Secure?

Is the new PQ crypto code PQXDH relies on
implemented correctly?

40

hax: linking Rust code with proof backends

42

Verifying crypto code
written in Rust
using hax and F*

Writing Crypto Code in Rust

43

Barrett Reduction: computes input % 3329
(in constant time, so cannot directly use modulus)

44

Potential Panics in Rust Code

These arithmetic operations may overflow or underflow
causing the code to panic at run-time

Expected behaviour: result % 3329 ≈ input % 3329
 && -3329 < result < 3329

45

Proving Panic Freedom and Correctness in F*

Enforcing Secret Independence

Type-based static analysis of forbidden operations

● arithmetic operations with input-dependent timing
(e.g. division) over secret integers

● comparison over secret values

● branching over secret values

● array or vector accesses at secret indices

Prevents a large class of remote timing attacks (at source level).

Does not prevent compiler-induced leaks, micro-architectural attacks, ….
46

KyberSlash: a new timing vulnerability

47

Bug present in
PQ-Crystals,
PQ-Clean, …

(also used in Signal)

Bug found during
Formal Verification
of our Rust code!

We built an optimized, portable,
formally verified implementation of
ML-KEM in Rust and C that is now
deployed in Firefox.

EasyCrypt

SMT/Auto

VERIFIED
CRYPTO

LIBRARIES

Vale

x86_64
AEAD,
 Field Arith

HACL*Portable C
EC, AEAD, DH,
Hash, Sig, PQC

libjade
x86_64
AEAD, Hash,
EC, PQC

FiatC, Rust, Go
Field Arith

AUCurves
Rust
EC, BLS

aws-lc

C, Java
EC, AEAD,
Hash, PQC

cryptoline
C, asm
Field Arith

F*

Coq/HOL
C, asm
EC, RSA s2n-bn

Rust
PQC

HACL*libcrux

Challenges and Research Directions

Modeling and verifying security against active quantum adversaries

● Moving beyond HNDL, handling post-quantum signatures

Verifying cryptographic protocol implementations

● Challenging for automation, ongoing work on TLS, MLS, Signal, …

Verifying privacy-preserving crypto mechanisms and protocols

● Zero-Knowledge proofs, Fully Homomorphic Encryption, MPC, etc.

Applying formal methods to larger cryptographic applications

● Build tools usable by developers, applicable to Rust, Go, C, …

Conclusions

● Just switching to brand new crypto does not improve security
○ We may be introducing new attacks that did not exist before

● Formal methods can help answer questions about crypto artifacts
○ We still need to ask the right questions from multiple angles
○ Systematic tool-based analyses can help head off issues early

● Crypto is not static, so proofs and implementations also need to evolve
○ A need for proof engineering, maintenance, continuous integration
○ A need for custom, usable tools that crypto developers can use

Questions?

○ SoK: Computer-Aided Cryptography
[Barbosa, Barthe, Bhargavan, Blanchet, Cremers, Liao, Parno, IEEE S&P 2021]

○ Formal verification of the PQXDH Post-Quantum key agreement protocol
for end-to-end secure messaging

[Bhargavan, Jacomme, Kiefer, Schmidt, Usenix Security 2024]
○ libcrux: https://github.com/cryspen/libcrux
○ hax: https://github.com/hacspec/hax

https://cryspen.com

https://github.com/cryspen/libcrux
https://github.com/hacspec/hax

