High Assurance
Post Quantum Cryptography

Karthikeyan Bhargavan

Joint work with Rolfe Schmidt (Signal), Charlie Jacomme (Inria), Franziskus Kiefer (Cryspen),
Goutam Tamvada (Cryspen), Lucas Franceschino (Cryspen), Jonathan Protzenko (MSR), ...

VSTTE 2024, Prague c Rys PE N



Formal verification can
speed development and
clarify security of

real world systems.



& Login | Ceska spofitelna X <+

25 bezpecnost.csas.cz/wlogin/?app_id=GEORGE 3| & Incognito : C rypto p rOtOCO|
3 All Bookmarks

Dimensions: Responsive ¥ 1114 % 100% ¥ No throttling v

CESKAS

sporitelna

George

J Login to internet banking

Client number / Username B

| don't remember my username

Cookle settings /\ You too can receive a scam SMS or

- @ Can | help you?
email

Elements Console Sources Network Performance Memory Application Security X Lighthouse Recorder »
Overview
This page is secure (valid HTTPS)

Main origin

valid ahd trusted
Secure origins
https://bezpecnost.csas.cz

View certificate
https://george.csas.cz

crypto algorithm

Unknown / canceled

RS LSRR CEss L2 all served securely




Creating Secure Channels (SSL 3.0-TLS 1.2)

Authenticated Key Exchange
+

Authenticated Encryption

Classic protocol design
Many security proofs
See e.g. SIGMA [2003]

Solved Problem?

BROWSER

N,

WEBSITE

sign(sks, [N, N, g¥])

gX

K = KDF(g¥,[N.N])

ae(K, data)

K'= KDF(@",[N.N])




Diffie-Hellman Key Exchange (1976)

A

Knows G = (g, p)

g” mod p

B

Knows G = (g,p)

g¥ mod p

>

- Ty
k = kdf(g mggp)

A and B share
secret key K

- Ty
k —/kdf(g mod p)

*




Diffie-Hellman Security Guarantee

/Xy mod p\
N\
O<xy<p Large Prime

g fixed (e.g. > 2048-bits)
\_ J Y,

(" )

The security of all DH-based protocols relies on a hardness assumption:
An attacker who does not know x or y cannot compute g mod p




What can go wrong?



Bad Crypto: Weak Diffie-Hellman Groups

If the prime p is too small,
an attacker can compute the discrete log:

y =log(g” mod p)

and hence compute the session key: g mod p

Current discrete log computation records:
«[Joux et al. 2005] 431-bit prime
[Kleinjung et al. 2007] 530-bit prime
«[Bouvier et al. 2014] 596-bit prime
-[Boudot et al. 2019] 795-bit prime

\_

Broken (efficiently
computable) by a
Quantum Computer
[Shor, 1994]

J




Protocol Flaw: Insecure Negotiation

A B

Knows sk 4, pkg Knows sk, pk 4

G2048, G512 G2048, G512
[G2048, G512] .
. G2048
my = g* mod paoas 5
B mgy = g¥ mod pooas
k= kdf(gmy mod p2043) k= kdf(gmy mod p2048)
sign(sk 4, hash(m; | ms)), mac(k, A)
sign(sk g, hash(my | ms)), mac(k, B)




Protocol Flaw: Downgrade Attack

A

Knows sk 4, pkg
G2048, G512

B= kdf(gmy mod p512)

MitM B
Remove all
strong groups || Knows skg, pk 4
G2048, G512
(G048, G512] o [G512] B
. G512
my = g” mod ps;2 o
» mg = ¢g¥ mod ps12
b = dlog(g¥ mod ps12) k = kdf(g*¥ mod p)
k = kdf(g®¥ mod ps12)
| 1
sign(sk 4, hash(m; | ms)), mac(k, A) Logjam Attack [2015]:
 SIE 8k bsh(fiy | itp)) (2, F) Downgrade + Break DH-512
-




Coding Bugs: Cryptographic Computations

/gxy mod p\
N\
O<xy<p Large Prime

g fixed (e.g. > 2048-bits)
e J % J

4 )

Modular Exponentiation, implemented using bignum multiplication
Can sometimes be the most expensive computation on a Web server




Coding Bugs: Textbook Multiplication

1101

x 1010

13 o

x 10 on
= 130 0000

+ 1101

10000010




Coding Bugs: 256-bit modular multiplication

64 bits 64 bits 64 bits 64 bits

carr{ 128 bits 128 blts‘ ' 128 bits i ' 128‘b|t$
carr{

" — —




Coding Bugs: 256-bit modular multiplication

What can go wrong?
e Integer overflow
(undefined output) X

64 bits 64 bits 64 bits 64 bits

carr % 128 bits 128[bits
e Buffer overflow/underflow ’f ‘“

(memory error) 1\ ’f-—-

e Missing carry steps reduce I

(wrong answer) L’_
e Side-channel Attack

(leaks secrets)




Coding Bugs: Side-channel attacks

1101 1101 Skipping Os is faster!
x 1010 x 1010 e [Fewer additions, carries
—— = ———— ... but leaks information
0000 1101
1101 + 1101 e Runtime proportional to
number of 1s in 1010
oooo o ____
e Attacker can observe
+ 1101 10000010 runtime to guess input
———————— e May leak secret key!
10000010



Other Coding Bugs: Protocol Code

® Incorrect use of crypto primitives

o Nonce reuse, public key validation, ...
e Parsing cryptographic formats

o Ambiguities, incorrect parsing,, memory errors, ...
e Protocol state machine flaws

o Authentication bypass, skip crypto operations, ...
e Crash or panic

o Unexpected messages, memory leaks, ...



Formal methods can help!

Verified crypto protocol designs

e Symbolic security analysis [ProVerif, Tamarin, DY™]
e Cryptographic proofs of security [CryptoVerif, EasyCrypt, Squirrel ]

Verified crypto software

e \lerified crypto libraries [F*, Coq, Isabelle, SAW, ...]
e \erified protocol code [F*, Dafny, Verus, ...]



A new opportunity:

many applications are now
being updated to provide
Post-Quantum security.



V.41l 150

< @ A it's the weekend S i
Ayesha, Anya, Caud, Dario, Franci... *
___\ - - ¥

e

Let’s see how this iy
process worked with the &> -

PQ transition of Signal
Messenger S




Analysing and Fixing Post-Quantum Signal




The (Classical) Signal Protocol

Modular design:

e X3DH handshake
e Double Ratchet for
continuous key agreement

Important security guarantees:

Mutual authentication
Post-compromise security
Forward secrecy
Deniability

SK = KDF(DH1 || DH2 || DH3 || DH4)




The (Classical) Signal Protocol

Modular design:

e X3DH handshake

e Double Ratchet for ] ; o
continuous key agreemd  Gontingent on Diffie-Hellman

Important security guarantee assumptiOnS - quantum fragile!

Ky 0 IKq

Confidentiality

Mutual authentication
Post-compromise security
Forward secrecy
Deniability

SK = KDF(DH1 || DH2 || DH3 || DH4)




Harvest Now, Decrypt Later
(HNDL) attacks:

Messages sent today
are vulnerable to
quantum attackers tomorrow



PQXDH Design: Add a PQ-KEM to X3DH

(SS, CT

SK =KD

DH DH
1 2 I KB Initiator Responder
g signy, (g7 sien, (k)| |
DH
TN - {SPK } (gekAadh4) A X3dhi(ikA7gikB7gopkB7gspkB)
S~ - B (ss,ct) <— encap(pgpkp) |
~o \DH4 K = kdf(dh4||ss)
~ ~ -
"~ OPK, g% fer|acad (K msgo)ika iks]
dh4 «— x3dh,(ikg,opkg, spkg, g™+, g#4)
) - {PQPK } ss «— decap(pgskg, ct)
KEM B _
K = kdf(dh4||ss)

F(DH, Il DH, Il DH, Il DH, Il SS)



Analyzing PQXDH

PQXDH is a very small addition to X3DH.

X3DH has been comprehensively analyzed

in a variety of security models

o Mutual Authentication, Confidentiality,Forward Secrecy

Is PQXDH as secure as X3DH?
Is it secure against an HNDL quantumadversary?



Our Formal Verification Methodology

Protocol
Specification




Our Formal Verification Methodology




Our Formal Verification Methodology

FIX
Protocol
s ity e BT e T SRR Specification

Formal Specification

v
Compromise Security Protocol ||Cryptographic
Model Goals Model Assumptions

|

Potential
Protocol
Flaw

el PROVERIF




Our Formal Verification Methodology

FIX
Protocol | .. ...
Specification *
Formal Specification

v :

s . g REFINE :
Compromise Security Protocol ||Cryptographic|| @[ :
Model Goals Model Assumptions A

Potential
Cryptographic
Weakness

CRYPTO
VERIF

FAILURE




Our Formal Verification Methodology

Protocol
et msmiBiE EAS i SR S Specification

Formal Specification

Compromise Security Protocol ||Cryptographic
Model Goals Model Assumptions

pOtEI"ltial ATTACK CRYPTO FAILURE pOte‘ntial
Protocol PROVERIF VERIF Cryptographic

Flaw Weakness

PROVED PROVED
Symbolic Cryptographic
Security Security
Theorem Theorem




Formally Specifying PQXDH 1 050t Resionier e -

(x Verify the signatures x)

Slngle Message between TWO Roles if verify(IKB_p,encodeEC(SPKB_p),SPKB_sig) then
if verify(IKB_p,encodeKEM(PQPKB_p),PQPKB_sig) then
e Arbitrary number of endpoints (% PQXDH Key Derivationx)
: let IKA_p = s2p(IKA_s) in
® Any endpomt can play any role let (CT:bitstring,SS:bitstring) =
_Af : ra ; pgkem_enc(PQPKB_p) in (% PQ-KEM Encap *)
e (Out-of-Band) Identity Key Verification new EKA siscalars
et : let EKA_p = s2p(EKA_s) in
e Untrusted Key Distribution Server let DH1 = dh(IKA s,SPKB p) in
let DH2 = dh(EKA_s,IKB_p) in
¥ . . : : let DH3 = dh(EKA_s,SPKB_p) in
Specification in Applied Pi Calculus let DH4 = dh(EKA s OPKB P) in

let SK = kdf(concat5(DH1,DH2,DH3,DH4,SS)) in

Makes all computations precise.
(* Send Message x)
What |S Sent on the ere? let ad = concatIK(IKA_p, IKB_p) in
new msg_nonce: bitstring;
What key encoding do we use? let msg = app_message(i,r,msg_nonce) in

let enc_msg = aead_enc(SK,empty_nonce,msg,ad) in
What exactly is signed/encrypted?
out(server, (IKA_p,EKA_p,CT,O0PKB_p,

How are all the keys derived? SPKB_p, PQPKB_p, enc_msg) )




Symbolic Analysis with ProVerif

Security goals as queries

e Secrecy, Authentication:
trace properties

e |Indistinguishability, Privacy:
equivalence properties

Fully automated analysis

Finds attacks and produces traces
No attack found =
symbolic security theorem

e Might not terminate!

(* Post-Quantum Forward Secrecy Query *)
A, B, spk, papk, sk, i, j;
(BlakeDone(A,B,spk,pgpk,sk)) @i
= not(attacker(sk))
(LongTermComp(A))@j & j <)
(QuantumComp)@j & j < i)

Attack Trace:

1. Using the function info_x25519_sha512_kyber1024 the attacker may obtain
info_x25519_sha512_kyber1024.
attacker(info_x25519_sha512_kyber1024).

2. Using the function zeroes_sha512 the attacker may obtain zeroes_sha512.
attacker(zeroes_sha512).

3. We assume as hypothesis that
attacker(a).

4. We assume as hypothesis that
attacker(b).

5. The message b that the attacker may have by 4 may be received at input {2}.
So the entry identity_pubkeys(b,SMUL(IK_s_2,G)) may be inserted in a table at i
table(identity_pubkeys(b,SMUL(IK_s_2,G))).




Game-Based Security Proofs with CryptoVerif

proof {
. crypto uf_cma_corrupt(sign) signAseed;
Computational crypto model out_game "gl.cv" occ;
insert before "EKSecAl <-R Z" ...
e Standard cryptographic assumptions SRR af Ler SREENORE <«

out_game '"gll.cv" occ;

e User-defined assumptions as equivalences  |insert after "oH 1(* ...
. . . crypto rom(H2);
® Probabilistic polynomial-time adversary out_game "g2.cv" occ;

insert before "EKSecAlp <-R Z" ...
insert after "RecvNoOPK(" ...
out_game ''gl2.cv'"occ;

Proof: sequence of game transformations  [insert after “oH(" ...
crypto rom(H1);

out_game '"g3.cv";

® Requires some manual guidance crypto gdh(gexp_div_8) ...
) . crypto int_ctxt(enc) x;

e Machine-checked transformations crypto ind_cpa(enc) sk;
out_game '"g4.cv";

e Computes concrete advantage formulas _
crypto }nt_ctxt_corrupt(enc) r_23;

e Proof failure may indicate attack, no trace ErYpPo AT _cEet_corruptiencl 1_s0;
}




Modeling the Quantum Adversary

Passive Quantum Adversary Model (Harvest-Now-Decrypt-Later)

e Adversary can break DH after the session is over
e PQ primitives (e.g. PQ-KEM) remain secure

Symbolic and Computational Analysis

e ProVerif automatically searches for attacks
that rely on broken primitives
e CryptoVerif checks that the classical game-based proof

still holds against passive quantum attackers
o Post-quantum sound CryptoVerif and verification of hybrid TLS and SSH
key-exchanges, Blanchet, Jacomme, IEEE CSF 2024



Key Confusion Attack on PQXDH

DH DH
IKA 1 2 IKB

DH,
EK, < {SPK_}
“~. DH,
RN - OPK Attacker swaps keys and signatures
B to break PQ security of PQXDH
(SS, CT, ) ™ {PQPK_} ProVerif finds this attack if:

e the key encodings can collide, and
e public keys are not validated

SK = KDF(DH, Il DH, Il DH, Il DH, || SS)




This is representative of a general class of
cross-protocol attacks between old and new
versions of the same protocol.

Easy Fix: Ensure all key/message/signature
encodings have disjoint co-domains.

Signal implementation already does this



KEM Re-encapsulation Vulnerability

Attacker re-encrypts a PQ-KEM ciphersuite for another key to
confuse the recipient and break session independence

Runs protocol

—

PreKeyBundle(...,
PQPKB1,...)

4 without violating the usual

Re-encapsulation can happen ; ?

Robbie
IND-CCA assumption for the KEM. |

send compromised CT.

PQXDHMessage(...,
CT...)

>

—
comp

KEM.Dec(PQPK_', CT)

Cle—
@(sscomp,PQPKBZ)

PreKeyBundle(...,
PQPK_2,...)

<>

PQXDHMessage(...

CT

comp"")

»SS

Blake completes protocol
with compromised secret:

comp

KEM.DeC(PQPKB2, CT

comp)




PQXDH Revision and Security Theorems

These findings led to a new revision of the PQXDH protocol:

e We required AEAD to be post-quantum IND-CPA and INT-CTXT
e Restricted the ranges of encodings to be disjoint
e Added PQPK_ to AD when itisn’t already bound within the KEM

With these changes we can prove that PQXDH meets its
classical and PQ security requirements in the
symbolic, computational, and HNDL quantum models.

The full process: analysis, fix, proof, new spec took 1 calendar month.



But is the Signal Implementation Secure?

Is the new PQ crypto code PQXDH relies on
implemented correctly?



FIPS 203 (Draft)

Federal Information Processing Standards Publication

Module-Lattice-based
Key-Encapsulation

Mechanism Standard

Category: Computer Security Subcategory: Cryptography

40



hax: linking Rust code with proof backends

/fgx frontend

n

rﬁﬁst Compiler
HIR =

i

Rust THIR L] JSON |[————
L J/
ax engine - Transformations AST.ml
V
Transformed
AST
ProVerif Coq F*

K@x backends

} CRYSPEN
/ A\ "4 ﬁﬁmﬁzm

lrezia —



Verifying crypto code
written in Rust
using hax and F*

NIST FIPS 203

V

[

Formal Specificatio

(F*)

i

Panic freedom
Functional C
Secret Indepen

42



Writing Crypto Code in Rust

i L

pub(crate) fn barrett_reduce(input:
let t = ::from( input) *
let quotient = (t >> ) as x
let remainder = input - (quotient *
remainder

Barrett Reduction: computes input % 3329
(in constant time, so cannot directly use modulus)




Potential Panics in Rust Code

) A

pub(crate) fn barrett_reduce(input:
let t = ::from( input) *
let quotient = (t >> ) as x
let remainder = input(-)(quotient( *
remainder

These arithmetic operations may overflow or underflow
causing the code to panic at run-time




Proving Panic Freedom and Correctness in F*

; £
Q ‘ :':.;:-:-'9

val barrett_reduce (input: 132_b (v v_BARRETT_R))
: Pure (132 b )
(requires True)
(ensures fun result ->
v result % v Libcrux.Kem.Kyber.Constants.v_FIELD_MODULUS
= v 1nput %v Libcrux.Kem.Kyber.Constants.v_FIELD_MODULUS)

Expected behaviour: result % 3329 = input % 3329
&& -3329 < result < 3329




Enforcing Secret Independence

Type-based static analysis of forbidden operations

e arithmetic operations with input-dependent timing
(e.g. division) over secret integers

e comparison over secret values

e branching over secret values

® array or vector accesses at secret indices

Prevents a large class of remote timing attacks (at source level).

Does not prevent compiler-induced leaks, micro-architectural attacks, ....

46
e



KyberSlash: a new timing vulnerability

void poly_tomsg(uint8_t msg[KYBER_INDCPA_MSGBYTES], const poly *a)
{
unsigned int 1i,j;
uintl6e_t t;

for(i=0; i<KYBER_N/8;i++) {

msg[i] = 0;

for(j=0;j<8;j++) {
t = a—>coeffs[8xi+j];
t += ((intl1l6_t)t >> 15) & KYBER_Q;
t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
msgli]l |= t << j;

}




We built an optimized, portable,
formally verified implementation of
ML-KEM in Rust and C that is now

deployed in Firefox.

libcrux - the formally verified
crypto library




/ Portable C HACL* 7

EC, AEAD, DH, .
Hash, Sig, PQC libcrux HACL* Z?EGA_DG‘I: )
of o , Hash,
Rust libjade | EC, PQC
x86_64 PQC L
AEAD,
Field Arith |\ \/ale F* EasyCrypt
VERIFIED
CRYPTO
LIBRARIES
AUCurves
Rust COC]/ HOL SMT/Auto C, Java
EC, BLS C. asm EC, AEAD,
EC, RSA s2n-bn aws-lc /| Hash. PQC |
C, asm
C, Rust, Go . . N :
Field Arith | Fiat cryptoline | Field Arith

[




Challenges and Research Directions

Modeling and verifying security against active quantum adversaries

e Moving beyond HNDL, handling post-quantum signatures
Verifying cryptographic protocol implementations

e Challenging for automation, ongoing work on TLS, MLS, Signal, ...
Verifying privacy-preserving crypto mechanisms and protocols

e Zero-Knowledge proofs, Fully Homomorphic Encryption, MPC, etc.
Applying formal methods to larger cryptographic applications

e Build tools usable by developers, applicable to Rust, Go, C, ...



Conclusions

e Just switching to brand new crypto does not improve security
o \We may be introducing new attacks that did not exist before

e Formal methods can help answer questions about crypto artifacts
o We still need to ask the right questions from multiple angles
o Systematic tool-based analyses can help head off issues early

e Crypto is not static, so proofs and implementations also need to evolve
o A need for proof engineering, maintenance, continuous integration
o A need for custom, usable tools that crypto developers can use



Questions?

SoK: Computer-Aided Cryptography
[Barbosa, Barthe, Bhargavan, Blanchet, Cremers, Liao, Parno, |IEEE S&P 2021]
Formal verification of the PQXDH Post-Quantum key agreement protocol
for end-to-end secure messaging
[Bhargavan, Jacomme, Kiefer, Schmidt, Usenix Security 2024]
libcrux: https://github.com/cryspen/libcrux
hax: https://qgithub.com/hacspec/hax

CRYSPEN

https://cryspen.com



https://github.com/cryspen/libcrux
https://github.com/hacspec/hax

