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A Collaboration is Born



Why PQC?

● Quantum Computers soon? Transition now!

○ Attack: store now, decrypt later

● Industry standards, government customers

○ By ~2026!

● 1st Priority: Key Exchange in SSH/TLS/…

● Next: digital signatures

● Many products (some OSS), industry-wide effort → Open Source
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Why Verify Lattice-Crypto Implementations?

● Goal: no implementation vulnerabilities in optimized code

● Experience from Elliptic-Curve Cryptography

○ Auditing code is important but challenging

○ Subtle bugs missed in high-profile implementations

● Simpler than ECC? (No carry chains, standard representations)

○ Yes, in reference implementations

● Tricky optimizations: vectorization, deferred reductions, decoding
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The Technical Details 
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We implement and verify 
this standard.



Implementing ML-KEM in Rust

● Pure Rust code: 16 KLOC
● Optimized for multiple platforms

○ Portable + AVX2 + AArch64 
○ 2 KLOC for SIMD optimizations (using intrinsics)

● Easy to integrate and deploy
○ Cargo crate: libcrux-ml-kem
○ PQCA’s official Rust implementation

Mathematics Low-Level Formats Algorithms High-Level APIs

Field, polynomial, matrix (de)serialization Sampling, IND-CPA, IND-CCA ML-KEM 512/768/1024

3k lines 3k lines 6k lines 4k lines 7

https://crates.io/crates/libcrux-ml-kem
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Verifying crypto code
written in Rust
using hax and F*



Writing Crypto Code in Rust
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Signed Barrett Reduction: with modulus 3329
(in constant time, so cannot directly use %)



Expected behaviour: compute a signed representative of the
    input field element (modulo 3329)
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Specifying Correctness
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Preventing Panics in Rust Code

These arithmetic operations may overflow or underflow
causing the code to panic at run-time



Verifying (De-)Serialization Automatically
i16 i16

u8u8u8

Serialize 12 Deserialize 12

12 bits 11 bits 10 bits 5 bits 4 bits 1 bits
per integer per integer per integer per integer per integer per integer

serialize deserialize portable avx2

6 variants 2 variants 2 variants

24 hand-optimized variants!

A new F* tactic that can prove every variant automatically!
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Enforcing Secret Independence

Type-based static analysis enforces a “constant-time” discipline

● arithmetic operations with input-dependent timing 
(e.g. division) over secret integers

● comparison over secret values

● branching over secret values

● array or vector accesses at secret indices

Prevents a large class of remote timing attacks (at source level).

Does not prevent compiler-induced leaks, micro-architectural attacks, …
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KyberSlash: a new timing vulnerability
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Bug also present in 
PQ-Crystals, 
PQ-Clean, …

(used in production)

Bug found in our 
Rust code during 
formal verification 

KyberSlash: Exploiting secret-dependent division timings in Kyber Implementations. 
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2025(2), 
209-234.  Bernstein, D. J., Bhargavan, K., Bhasin, S., Chattopadhyay, A., Chia, T. K., 
Kannwischer, M. J., Kiefer, F., Paiva, T. B., Ravi, P., & Tamvada, G.



Scaling the Proof Effort
● Full formal verification of a large code-base

○ Source Rust code: 16 KLOC
○ Generated F* model: 28 KLOC   (Portable + AVX2)

● Multiple automation strategies
○ SMT-based automation for low-level mathematics
○ Tactic-based automation for serialization
○ Type-based secret independence analysis

● Still needs many manual F* proofs + annotations for the full proof

Mathematics Low-Level Formats Algorithms High-Level APIs

Field, polynomial, matrix (de)serialization Sampling, IND-CPA, IND-CCA ML-KEM 512/768/1024

 6k lines of F* 5k lines of F* 6k lines of F* 4k lines of F*

Identifying patterns to automate

The right tool for the right job (backends serve this story as well)

Rust is a good input language (VS C, Low*)
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Verified PQC at Scale 
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Compiling 
verified Rust 
to C code

Many mainstream crypto 
libraries need C code

NSS, BoringSSL,
OpenSSH, OpenSSL, …



Integration Challenges

● Support application environment (language, compiler, platform)
○ Integration with C and C++, multiple compilers (GCC, MSVC), multiple platforms

● Integration with PKCS#11 (NSS) and FIPS (BoringSSL)
○ Implement API requirements for PKCS#11, FIPS self tests

● Provide optimized APIs for production libraries
○ Store unpacked keys for better performance (not defined in FIPS 203)

● Respect internal formats for keys
○ Adapt and extend Rust APIs to implement the internal formats 

● Track a moving target
○ Provide support and continuous integration as code and application evolves

● C code size is larger than Rust

○  From monomorphizing ML-KEM variants from Rust

○ ~40KB optimized for speed

● Match existing APIs in the crypto library

○ Opaque secret keys, Alignment, Strict aliasing

● C++ toolchain compatibility (yes, even iOS, MSVC, ARM, bigendian…)

● Scale: ~100 build configurations, and evolving
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Maintainability and Performance

Focus on Rust code size
Large Rust -> Large F*

Processes for Google to accept
Code size ©
Maintability (install tools)

API integration

● Key requirements before verified code can be deployed
● Adequate run-time performance

○ Our verified portable code is as fast as (or faster than) hand-written C code
○ Our verified AVX2 code is at least 2X faster than portable code

● Modest code size
○ When compiled, our portable + AVX2 code increased binary size by XXX bytes

● Maintainability
○ All our tools run on a standard Arm/Intel machine with Debian/Ubuntu/MacOS
○ Long-term support provided by Cryspen
○ C compilation and verification are run with every check-in on a Continuous Integration server
○ Google engineers can run our tools themselves
○ Possible to superficially modify the code and rerun the tools
○ For more complex changes, verification engineers will need to fix the proofs

● Establishing speciality tooling

○ Change workflow: modify Rust code, re-prove, re-generate C

○ Review specs, not code – but computer-check proofs!

○ Continuous integration for tools (ARM/Intel × Debian/MacOS)

○ Long-term support from Cryspen

● AVX2: ~2x faster than BoringSSL reference implementation

○ A great argument for at-scale deployment!
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Takeaways

● PQC is coming, verification is important 
○ Demonstrated with ML-KEM and KyberSlash
○ Deployments in OpenSSL, NSS, PQCA

● Moving from a formally verified implementation to deployment at scale 
is hard!

● Next up 
○ Integration into BoringSSL
○ ML-DSA 

Try our Rust or C code today! 

● PQC is coming, verification is important 

○ Demonstrated with ML-KEM and KyberSlash

○ Deployments in OpenSSH, NSS, PQCA, Signal, Dropbear

● Many challenges need solving between

○ Formally verified fast code

○ At-scale deployment

● Next up: ML-DSA


