
Formal Specifications for
Certifiable Cryptography
Karthikeyan Bhargavan

Manuel Barbosa, Franziskus Kiefer,
Peter Schwabe, Pierre-Yves Strub

POPULAR
CRYPTO

LIBRARIES

BoringSSL
NSS

Web App

OS IoT

CERTIFIED
CRYPTO

LIBRARIES

BoringSSL
NSS

Web

OS

App
AWS-LC

IoT

VERIFIED
CRYPTO

LIBRARIES

Vale

x86_64
AEAD, Hash,
Field Arith

HACL*

Portable C
EC, AEAD, DH,
Hash, Sig, PQC libjade

x86_64
AEAD, Hash,
EC, PQC

FiatC, Rust, Go
Field Arith

AUCurves
Rust
EC, BLS

Cryptol/SAW

C, Java
EC, AEAD,
Hash, PQC

CryptoLine
C, asm
Field Arith

EasyCrypt
F*

Coq SAT/SMT

Certification
WorkflowTESTABLE SPEC

TEST &
VALIDATE

Security
Analysis
Workflow

FORMAL SPEC

TEST &
VALIDATE

SECURITY
PROOF

Symbolic proofs: ProVerif/Tamarin
Cryptographic proofs: EasyCrypt/CryptoVerif/Squirrel
Post-Quantum proofs: EasyCrypt/CryptoVerif/Squirrel

Is ML-KEM IND-CCA?
Is TLS 1.3 a secure channel?
Is MLS a CGKA?

Verified
Cryptography
Workflow

In English +
Pseudocode

IETF RFC or
NIST Standard

+ Test Vectors

F* Spec
(HACL*)

EasyCrypt Spec
(libjade)

F* Implementation

Portable C Code

Translate

Translate

Jasmin
Implementation

Translate

Intel AVX2
 Assembly

F* or Coq or
EasyCrypt…

Potential Implementation Bug
● Memory Safety Violation
● Functional Correctness Flaw
● Side Channel Vulnerability

Deploy Code Fix and re-verify

Verified
Cryptography
Workflow

Good news: For any modern crypto algorithm,
there is probably a verified implementation

● You don’t have to sacrifice performance
● Mechanized proofs that you can run and re-run yourself
● You (mostly) don’t have to read or understand the proofs

HACL* and libcrux

● HACL*: Verified C/assembly
implementations of all the
classical crypto you need
○ Specs/Proofs in F*
○ Intel/ARM SIMD-optimized
○ “Fastest in the world”

(sometimes)

● libcrux: Verified Rust (and C)
implementations of modern
FIPS algorithms: SHA-3,
ML-KEM, FrodoKEM, …

● Used in Firefox, Linux, etc.

But… not always easy to use, extend, or
 combine code from verified libraries

● You do need to carefully audit the formal specs, written in
tool-specific spec languages like F*, Coq, EasyCrypt

● You do need to safely use their low-level APIs,
which often embed subtle security-critical pre-conditions

Specs are needed for analysis and verification

But… what makes a spec a (good) spec?

Specs for ML-KEM

Mathematical Operations

● Feature: Succinct, unambiguous, mathematical
● Uses mathematical integers, in principle unbounded
● Uses modular field arithmetic, with specific rounding functions
● ML-KEM also uses polynomials, vectors, matrices
● Other crypto standards use elliptic curves, finite fields, pairing-based curves, …

Mathematical Algorithms

● Computes a math function
● Uses loops, variables
● Easy to implement
● Not so simple to understand

● Is this a “good” spec?
● Is it correct?
● Desired Feature:

“We hold these specs to be
self-evidently correct”

EasyCrypt Spec

● Feature: Machine Checked
● Feature: Basis for security proof for ML-KEM
● Feature: Basis for correctness proof for Jasmin implementation

● Close to the mathematical spec (easy to eyeball and to formally verify)
● Can this be in the NIST spec? Is it stable? Is it readable for programmers?

Python pseudocode in the IETF RFC

● Python, SAGE-friendly
● Feature: Executable
● Feature: Readable by

programmers, written by
cryptographers

● Is this a “good” spec?
● Is it correct?

An executable, translatable spec in hacspec

hacspec

hax

F* Coq EasyCrypt

Mathematical Precision vs. Implementation Guidance

● KyberSlash Attacks
● Version 1: timing attack due to

division in Compress_1 applied
to plaintext

● Version 2: timing attack due to
division in Compress_12
applied to IND-CPA ciphertext

● Would having secrecy
annotations in the spec have
helped?

Specs for Constructions & Protocols

CryptoVerif (Signed DH, HPKE, WireGuard)

● Process calculus
● Defines protocol actions,

cryptographic assumptions, security
goals, as oracles,

● Feature: Machine-checked
● Feature: Close to pen-and-paper

proofs written by cryptographers

● Should this be in the HPKE RFC?

ProVerif (TLS 1.3, Signal, …)

● Process calculus
● Defines protocol actions, symbolic

cryptographic assumptions, security
goals, as concurrent processes

● Feature: Machine-checked
● Feature: Fully automatic, finds

protocol flaws, MitM attacks

● Not a crypto proof (symbolic)
● Should this be in the TLS RFC?

Questions: what makes a good spec?

Questions for discussion

● Should we embed formal specifications within NIST and IETF crypto standards?
● If not, would it be possible to link the pseudocode used in these standards with

formal specifications?
● Is it more valuable to have an executable specification for testing or a formal

spec for verification?
● Are specifications written in languages like Python and Rust more accessible,

readable, usable than specifications written in formal languages like F∗ or
EasyCrypt?

● Should formal specifications describe high-level mathematical concepts like
polynomial multiplication or should they detail low-level algorithms like NTT
multiplication?

● Should specifications in standards be targeted towards security proofs or
implementation correctness, and can they do both?

● Should standards and their formal specifications include indications for secure
implementations, such as algorithms that may be at risk of side-channel attacks?

hacspec

hacspec: a tool-independent spec language

Design Goals

● Easy to use for crypto developers
● Familiar language and tools
● Succinct specs, like pseudocode
● Strongly typed to avoid spec errors
● Executable for spec debugging
● Testable against RFC test vectors
● Translations to formal languages like

 F*, Coq, EasyCrypt, …

hacspec: a tool-independent spec language

Design Goals

● Easy to use for crypto developers
● Familiar language and tools
● Succinct specs, like pseudocode
● Strongly typed to avoid spec errors
● Executable for spec debugging
● Testable against RFC test vectors
● Translations to formal languages like

 F*, Coq, EasyCrypt, …

A purely functional subset of Rust

● Safe Rust without external side-effects
● No mutable borrows
● All values are copyable
● Rust tools & development environment
● A library of common abstractions

○ Arbitrary-precision Integers
○ Secret-independent Machine Ints
○ Vectors, Matrices, Polynomials,...

Language and Toolchain Details: hacspec.org

https://hacspec.org

hacspec: purely functional crypto code in Rust

ChaCha20 RFC ChaCha20 in
hacspec

Call-by-value

State-passing style

hacspec: abstract integers for field arithmetic

Poly1305 RFC
(update_block)

Poly1305 in
hacspec

Modular 130-bit Prime Field Arithmetic

Modular Arithmetic over User-Defined Field

hacspec: secret integers for “constant-time” code

AES in
hacspec

ChaCha20 in
hacspec

Separate Secret and Public Values

● New types: U8, U32, U64, U128
● Can do arithmetic: +, *, -
● Can do bitwise ops: ^, |, &
● Cannot do division: /, %
● Cannot do comparison: ==, !=, <, …
● Cannot use as array indexes: x[u]

Enforces secret independence

● A “constant-time” discipline
● Important for some crypto specs

hacspec: translation to formal languages

ChaCha20 in
hacspec

F* Spec

Coq Spec

EasyCrypt SpecActive development: github.com/hacspec

https://github.com/hacspec

hacspec: towards high-assurance crypto software

hacspec: towards high-assurance crypto software

hacspec: towards high-assurance crypto software

libcrux: a library of verified cryptography

libcrux: architecture

Unsafe APIs: Array Constraints

Fixed Length

Disjoint

Verified F* API: Preconditions

Length Constraints

Verified F* API: Preconditions

Disjointness Constraints

libcrux: Typed Rust APIs

libcrux: supported algorithms & perf

Crypto Standard Platforms Specs Implementations

ECDH
● x25519
● P256

Portable + Intel ADX
Portable

hacspec, F*
hacspec, F*

HACL*, Vale
HACL*

AEAD
● Chacha20Poly1305
● AES-GCM

Portable + Intel/ARM SIMD
Intel AES-NI

hacspec, F*, EasyCrypt
hacspec, F*

HACL*, libjade
Vale

Signature
● Ed25519
● ECDSA P256
● BLS12-381

Portable
Portable
Portable

hacspec, F*
hacspec, F*

hacspec, Coq

HACL*
HACL*

AUCurves

Hash
● Blake2
● SHA2
● SHA3

Portable + Intel/ARM SIMD
Portable
Portable + Intel SIMD

hacspec, F*
hacspec, F*

hacspec, F*, EasyCrypt

HACL*
HACL*

HACL*, libjade

HKDF, HMAC Portable hacspec, F* HACL*

HPKE Portable hacspec hacspec

libcrux Rust Crypto Ring OpenSSL

Sha3 256 574.39 MiB/s 573.89 MiB/s unsupported 625.37 MiB/s

x25519 30.320 µs 35.465 µs 30.363 µs 32.272 µs

libcrux: performance

libcrux Rust Crypto Ring OpenSSL

Sha3 256 337.67 MiB/s 275.05 MiB/s unsupported 322.21 MiB/s

x25519 37.640 µs 67.660 µs 71.236 µs 48.620 µs

Intel Kaby Lake (ADX, AVX2)

Apple Arm M1 Pro (Neon)

libjade HACL* + Vale

HACL*

https://tech.cryspen.com/hpke-spec/hpke/index.html

https://tech.cryspen.com/hpke-spec/hpke/index.html

HPKE: Construction

HPKE code performance: hacspec vs. stateful Rust

hacspec HPKE Rust HPKE

Setup Sender 79.9 μs 68 μs

Setup Receiver 76 μs 54.4 μs

libcrux RustCrypto

Sha2 256 311.76 MiB/s 319.10 MiB/s

x25519 30.320 µs 35.465 µs

x25519 base 30.218 µs 11.812 µs

ChaCha20Poly1305 758.89 MiB/s 249.33 MiB/s

Ongoing and Future Work

The Last Yard: linking hacspec to security proofs

https://eprint.iacr.org/2023/185

https://eprint.iacr.org/2023/185

Verification Tools: more proof backends for hacspec

Security Analysis Tools

● SSProve: modular crypto proofs
● EasyCrypt: verified constructions

● ProVerif: symbolic protocol proofs
● CryptoVerif: verified protocols
● Squirrel: protocol verifier

Program Verification Tools

● QuickCheck: logical spec testing
● Creusot: verifying spec contracts
● Aeneas: verifying Rust code

● LEAN: verification framework
● <Your favourite prover here>

Conclusions

● Fast verified code is available today for most modern crypto algorithms
○ + some post-quantum crypto; Future: verified code for ZKP, FHE, MPC, …
○ Most code in C or Intel assembly; Ongoing: Rust, ARM assembly, …

● hacspec can be used as a common spec language for multiple tools/libraries
○ Ongoing: adding new Rust features, new proof backends, linking with Rust verifiers, …
○ Try it yourself: hacspec.org

● libcrux provides safe Rust APIs to multiple verified crypto libraries
○ Ongoing: recipes for integrating new verified crypto from various research projects
○ Try it yourself: libcrux.org

https://hacspec.github.io/
https://github.com/cryspen/libcrux

Thanks!

● HACL*: https://github.com/hacl-star/hacl-star
● Vale: https://github.com/ValeLang/Vale
● libjade: https://github.com/formosa-crypto/libjade
● AUCurves: https://github.com/AU-COBRA/AUCurves

● hacspec: https://github.com/hacspec/hacspec
● libcrux: https://github.com/cryspen/libcrux

https://github.com/hacl-star/hacl-star
https://github.com/ValeLang/Vale
https://github.com/formosa-crypto/libjade
https://github.com/AU-COBRA/AUCurves
https://github.com/hacspec/hacspec
https://github.com/cryspen/libcrux

