1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
#![doc = include_str!("../Readme.md")]
#![doc = include_str!("../Security.md")]
#![doc = include_str!("../Implementation.md")]
#![allow(non_camel_case_types, non_snake_case, unused_imports)]
use hacspec_lib::*;
use hpke_aead::*;
use hpke_kdf::*;
use hpke_kem::*;
use hpke_errors::*;
// === Constants ===
/// A one-byte value indicating the HPKE mode, defined in the following table.
///
/// | Mode | Value |
/// | ------------- | ----- |
/// | mode_base | 0x00 |
/// | mode_psk | 0x01 |
/// | mode_auth | 0x02 |
/// | mode_auth_psk | 0x03 |
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum Mode {
/// 0x00
mode_base,
/// 0x01
mode_psk,
/// 0x02
mode_auth,
/// 0x03
mode_auth_psk,
}
// === Types ===
#[derive(Clone, Copy)]
pub struct HPKEConfig(pub Mode, pub KEM, pub KDF, pub AEAD);
pub type KemOutput = ByteSeq;
pub type Ciphertext = ByteSeq;
#[derive(Default)]
pub struct HPKECiphertext(pub KemOutput, pub Ciphertext);
pub type HpkePrivateKey = ByteSeq;
pub type HpkePublicKey = ByteSeq;
pub struct HPKEKeyPair(pub HpkePrivateKey, pub HpkePublicKey);
pub type AdditionalData = ByteSeq;
pub type Psk = ByteSeq;
pub type PskId = ByteSeq;
// === String labels ===
/// "info_hash" label for [`LabeledExtract()`].
///
/// See [`KeySchedule`] for details.
fn info_hash_label() -> ByteSeq {
byte_seq!(0x69u8, 0x6eu8, 0x66u8, 0x6fu8, 0x5fu8, 0x68u8, 0x61u8, 0x73u8, 0x68u8)
}
/// "psk_id_hash" label for [`LabeledExtract()`].
///
/// See [`KeySchedule`] for details.
fn psk_id_hash_label() -> ByteSeq {
byte_seq!(
0x70u8, 0x73u8, 0x6bu8, 0x5fu8, 0x69u8, 0x64u8, 0x5fu8, 0x68u8, 0x61u8, 0x73u8, 0x68u8
)
}
/// "secret" label for [`LabeledExtract()`].
///
/// See [`KeySchedule`] for details.
fn secret_label() -> ByteSeq {
byte_seq!(0x73u8, 0x65u8, 0x63u8, 0x72u8, 0x65u8, 0x74u8)
}
/// "key" label for [`LabeledExpand()`].
///
/// See [`KeySchedule`] for details.
fn key_label() -> ByteSeq {
byte_seq!(0x6bu8, 0x65u8, 0x79u8)
}
/// "base_nonce" label for [`LabeledExpand()`].
///
/// See [`KeySchedule`] for details.
fn base_nonce_label() -> ByteSeq {
byte_seq!(0x62u8, 0x61u8, 0x73u8, 0x65u8, 0x5fu8, 0x6eu8, 0x6fu8, 0x6eu8, 0x63u8, 0x65u8)
}
/// "exp" label for [`LabeledExpand()`].
///
/// See [`KeySchedule`] for details.
fn exp_label() -> ByteSeq {
byte_seq!(0x65u8, 0x78u8, 0x70u8)
}
/// "sec" label for [`LabeledExpand()`].
///
/// See [`Context_Export`] for details.
fn sec_label() -> ByteSeq {
byte_seq!(0x73u8, 0x65u8, 0x63u8)
}
/// Get the numeric value of the `mode`.
///
/// See [`Mode`] for details.
fn hpke_mode_label(mode: Mode) -> ByteSeq {
match mode {
Mode::mode_base => byte_seq!(0x00u8),
Mode::mode_psk => byte_seq!(0x01u8),
Mode::mode_auth => byte_seq!(0x02u8),
Mode::mode_auth_psk => byte_seq!(0x03u8),
}
}
/// Get the numeric value of the `aead_id`.
///
/// See [`AEAD`] for details.
fn hpke_aead_value(aead_id: AEAD) -> U16 {
match aead_id {
AEAD::AES_128_GCM => U16(0x0001u16),
AEAD::AES_256_GCM => U16(0x0002u16),
AEAD::ChaCha20Poly1305 => U16(0x0003u16),
AEAD::Export_only => U16(0xFFFFu16),
}
}
/// Get the KEM algorithm from the config
fn kem(config: HPKEConfig) -> KEM {
let HPKEConfig(_, kem, _, _) = config;
kem
}
// === Context Helper ===
type EncodedHpkePublicKey = ByteSeq;
type ExporterSecret = ByteSeq;
type SequenceCounter = u32;
type Context = (Key, Nonce, SequenceCounter, ExporterSecret);
type SenderContext = (EncodedHpkePublicKey, Context);
pub type SenderContextResult = Result<SenderContext, HpkeError>;
pub type ContextResult = Result<Context, HpkeError>;
pub type EmptyResult = Result<(), HpkeError>;
/// Cipher suite identifier
///
/// See [`KeySchedule`] for more details.
///
/// The implicit `suite_id` value used within `LabeledExtract` and `LabeledExpand`
/// is defined based on them as follows:
///
/// ```text
/// suite_id = concat(
/// "HPKE",
/// I2OSP(kem_id, 2),
/// I2OSP(kdf_id, 2),
/// I2OSP(aead_id, 2)
/// )
/// ```
fn suite_id(config: HPKEConfig) -> ByteSeq {
let HPKEConfig(_, kem, kdf, aead) = config;
byte_seq!(0x48u8, 0x50u8, 0x4bu8, 0x45u8) // "HPKE"
.concat(&U16_to_be_bytes(kem_value(kem)))
.concat(&U16_to_be_bytes(kdf_value(kdf)))
.concat(&U16_to_be_bytes(hpke_aead_value(aead)))
}
/// The default PSK ""
///
/// ```text
/// default_psk = ""
/// ```
///
/// See [`KeySchedule`] for more details.
fn default_psk() -> ByteSeq {
ByteSeq::new(0)
}
/// The default PSK ID ""
///
/// ```text
/// default_psk_id = ""
/// ```
///
/// See [`KeySchedule`] for more details.
fn default_psk_id() -> ByteSeq {
ByteSeq::new(0)
}
fn empty_bytes() -> ByteSeq {
ByteSeq::new(0)
}
/// Creating the Encryption Context
///
/// ...
///
/// ```text
/// def VerifyPSKInputs(mode, psk, psk_id):
/// got_psk = (psk != default_psk)
/// got_psk_id = (psk_id != default_psk_id)
/// if got_psk != got_psk_id:
/// raise Exception("Inconsistent PSK inputs")
///
/// if got_psk and (mode in [mode_base, mode_auth]):
/// raise Exception("PSK input provided when not needed")
/// if (not got_psk) and (mode in [mode_psk, mode_auth_psk]):
/// raise Exception("Missing required PSK input")
/// ```
///
/// See [`KeySchedule`] for detail.
pub fn VerifyPSKInputs(config: HPKEConfig, psk: &Psk, psk_id: &PskId) -> EmptyResult {
let HPKEConfig(mode, _kem, _kdf, _aead) = config;
let got_psk = psk.len() != 0;
let got_psk_id = psk_id.len() != 0;
if got_psk != got_psk_id {
EmptyResult::Err(HpkeError::InconsistentPskInputs)
} else {
// FIXME: https://github.com/hacspec/hacspec/issues/85
if got_psk && (mode == Mode::mode_base || mode == Mode::mode_auth) {
EmptyResult::Err(HpkeError::UnnecessaryPsk)
} else {
if !got_psk && (mode == Mode::mode_psk || mode == Mode::mode_auth_psk) {
EmptyResult::Err(HpkeError::MissingPsk)
} else {
EmptyResult::Ok(())
}
}
}
}
/// ## Creating the Encryption Context
///
///
/// The variants of HPKE defined in this document share a common
/// key schedule that translates the protocol inputs into an encryption
/// context. The key schedule inputs are as follows:
///
/// * `mode` - A one-byte value indicating the HPKE mode, defined in [`Mode`].
/// * `shared_secret` - A KEM shared secret generated for this transaction.
/// * `info` - Application-supplied information (optional; default value
/// "").
/// * `psk` - A pre-shared key (PSK) held by both the sender
/// and the recipient (optional; default value "").
/// * `psk_id` - An identifier for the PSK (optional; default value "").
///
/// Senders and recipients MUST validate KEM inputs and outputs as described
/// in [`KEM`].
///
/// The `psk` and `psk_id` fields MUST appear together or not at all.
/// That is, if a non-default value is provided for one of them, then
/// the other MUST be set to a non-default value. This requirement is
/// encoded in [`VerifyPSKInputs()`] below.
///
/// The `psk`, `psk_id`, and `info` fields have maximum lengths that depend
/// on the KDF itself, on the definition of [`LabeledExtract()`], and on the
/// constant labels used together with them. See [KDF Input Length](mod@hpke_kdf#input-length-restrictions) for
/// precise limits on these lengths.
///
/// The `key`, `base_nonce`, and `exporter_secret` computed by the key schedule
/// have the property that they are only known to the holder of the recipient
/// private key, and the entity that used the KEM to generate `shared_secret` and
/// `enc`.
///
/// In the Auth and AuthPSK modes, the recipient is assured that the sender
/// held the private key `skS`. This assurance is limited for the DHKEM
/// variants defined in this document because of key-compromise impersonation,
/// as described in [`mod@hpke_kem#dh-based-kem`] and the [security properties section](crate#security-properties). If in the PSK and
/// AuthPSK modes, the `psk` and `psk_id` arguments are provided as required,
/// then the recipient is assured that the sender held the corresponding
/// pre-shared key. See the security properties section on the [module page](`crate`) for more details.
///
/// The HPKE algorithm identifiers, i.e., the KEM `kem_id`, KDF `kdf_id`, and
/// AEAD `aead_id` 2-byte code points as defined in [`KEM`], [`KDF`],
/// and [`AEAD`], respectively, are assumed implicit from the implementation
/// and not passed as parameters.
/// ```text
/// def KeySchedule<ROLE>(mode, shared_secret, info, psk, psk_id):
/// VerifyPSKInputs(mode, psk, psk_id)
///
/// psk_id_hash = LabeledExtract("", "psk_id_hash", psk_id)
/// info_hash = LabeledExtract("", "info_hash", info)
/// key_schedule_context = concat(mode, psk_id_hash, info_hash)
///
/// secret = LabeledExtract(shared_secret, "secret", psk)
///
/// key = LabeledExpand(secret, "key", key_schedule_context, Nk)
/// base_nonce = LabeledExpand(secret, "base_nonce",
/// key_schedule_context, Nn)
/// exporter_secret = LabeledExpand(secret, "exp",
/// key_schedule_context, Nh)
///
/// return Context<ROLE>(key, base_nonce, 0, exporter_secret)
/// ```
///
/// The `ROLE` template parameter is either S or R, depending on the role of
/// sender or recipient, respectively. See [HPKE DEM](`ContextS_Seal`) for a discussion of the
/// key schedule output, including the role-specific `Context` structure and its API.
///
/// Note that the `key_schedule_context` construction in [`KeySchedule()`] is
/// equivalent to serializing a structure of the following form in the TLS presentation
/// syntax:
///
/// ~~~text
/// struct {
/// uint8 mode;
/// opaque psk_id_hash[Nh];
/// opaque info_hash[Nh];
/// } KeyScheduleContext;
/// ~~~
///
/// This function takes the `<MODE>` as argument in [`HPKEConfig`].
pub fn KeySchedule(
config: HPKEConfig,
shared_secret: &SharedSecret,
info: &Info,
psk: &Psk,
psk_id: &PskId,
) -> ContextResult {
VerifyPSKInputs(config, psk, psk_id)?;
let HPKEConfig(mode, _kem, kdf, aead) = config;
let psk_id_hash = LabeledExtract(
kdf,
&suite_id(config),
&empty_bytes(),
&psk_id_hash_label(),
psk_id,
)?;
let info_hash = LabeledExtract(
kdf,
&suite_id(config),
&empty_bytes(),
&info_hash_label(),
info,
)?;
let key_schedule_context = hpke_mode_label(mode)
.concat_owned(psk_id_hash)
.concat_owned(info_hash);
let secret = LabeledExtract(kdf, &suite_id(config), shared_secret, &secret_label(), psk)?;
let key = LabeledExpand(
kdf,
&suite_id(config),
&secret,
&key_label(),
&key_schedule_context,
Nk(aead),
)?;
let base_nonce = LabeledExpand(
kdf,
&suite_id(config),
&secret,
&base_nonce_label(),
&key_schedule_context,
Nn(aead),
)?;
let exporter_secret = LabeledExpand(
kdf,
&suite_id(config),
&secret,
&exp_label(),
&key_schedule_context,
Nh(kdf),
)?;
ContextResult::Ok((key, base_nonce, 0u32, exporter_secret))
}
/// ## Encryption to a Public Key - Sender
///
/// The most basic function of an HPKE scheme is to enable encryption to the
/// holder of a given KEM private key. The [`SetupBaseS()`] and [`SetupBaseR()`]
/// procedures establish contexts that can be used to encrypt and decrypt,
/// respectively, for a given private key. The KEM shared secret is combined via
/// the KDF with information describing the key exchange, as well as the explicit
/// info parameter provided by the caller.The parameter pkR is a public key,
/// and enc is an encapsulated KEM shared secret.
///
/// ```text
/// def SetupBaseS(pkR, info):
/// shared_secret, enc = Encap(pkR)
/// return enc, KeyScheduleS(mode_base, shared_secret, info,
/// default_psk, default_psk_id)
/// ```
pub fn SetupBaseS(
config: HPKEConfig,
pkR: &HpkePublicKey,
info: &Info,
randomness: Randomness,
) -> SenderContextResult {
let (shared_secret, enc) = Encap(kem(config), pkR, randomness)?;
let key_schedule = KeySchedule(
config,
&shared_secret,
info,
&default_psk(),
&default_psk_id(),
)?;
SenderContextResult::Ok((enc, key_schedule))
}
/// ## Encryption to a Public Key - Receiver
///
/// See [`SetupBaseS`] for more details.
///
/// ```text
/// def SetupBaseR(enc, skR, info):
/// shared_secret = Decap(enc, skR)
/// return KeyScheduleR(mode_base, shared_secret, info,
/// default_psk, default_psk_id)
/// ```
pub fn SetupBaseR(
config: HPKEConfig,
enc: &EncodedHpkePublicKey,
skR: &HpkePrivateKey,
info: &Info,
) -> ContextResult {
let shared_secret = Decap(kem(config), enc, skR)?;
let key_schedule = KeySchedule(
config,
&shared_secret,
info,
&default_psk(),
&default_psk_id(),
)?;
ContextResult::Ok(key_schedule)
}
/// ## Authentication using a Pre-Shared Key - Sender
///
/// This variant extends the base mechanism by allowing the recipient to
/// authenticate that the sender possessed a given PSK. The PSK also improves
/// confidentiality guarantees in certain adversary models, as described in the
/// [security properties](crate#security-properties). We assume that both parties have been provisioned with
/// both the PSK value psk and another byte string `psk_id` that is used to identify
/// which PSK should be used.
/// The primary difference from the base case is that the psk and psk_id values
/// are used as `ikm` inputs to the KDF (instead of using the empty string). The
/// PSK MUST have at least 32 bytes of entropy and SHOULD be of length Nh bytes
/// or longer. See the [PSK Recommendations](crate#pre-shared-key-recommendations) for a more detailed discussion.
///
/// ```text
/// def SetupPSKS(pkR, info, psk, psk_id):
/// shared_secret, enc = Encap(pkR)
/// return enc, KeyScheduleS(mode_psk, shared_secret, info, psk, psk_id)
/// ```
pub fn SetupPSKS(
config: HPKEConfig,
pkR: &HpkePublicKey,
info: &Info,
psk: &Psk,
psk_id: &PskId,
randomness: Randomness,
) -> SenderContextResult {
let (shared_secret, enc) = Encap(kem(config), pkR, randomness)?;
let key_schedule = KeySchedule(config, &shared_secret, info, psk, psk_id)?;
SenderContextResult::Ok((enc, key_schedule))
}
/// ## Authentication using a Pre-Shared Key - Receiver
///
/// See [`SetupPSKS`] for more details.
///
/// ```text
/// def SetupPSKR(enc, skR, info, psk, psk_id):
/// shared_secret = Decap(enc, skR)
/// return KeyScheduleR(mode_psk, shared_secret, info, psk, psk_id)
/// ```
pub fn SetupPSKR(
config: HPKEConfig,
enc: &EncodedHpkePublicKey,
skR: &HpkePrivateKey,
info: &Info,
psk: &Psk,
psk_id: &PskId,
) -> ContextResult {
let shared_secret = Decap(kem(config), enc, skR)?;
let key_schedule = KeySchedule(config, &shared_secret, info, psk, psk_id)?;
ContextResult::Ok(key_schedule)
}
/// ## Authentication using an Asymmetric Key - Sender
///
/// This variant extends the base mechanism by allowing the recipient
/// to authenticate that the sender possessed a given KEM private key.
/// This is because [`AuthDecap(enc, skR, pkS)`](`hpke_kem::AuthDecap()`) produces the correct KEM
/// shared secret only if the encapsulated value `enc` was produced by
/// [`AuthEncap(pkR, skS)`](`hpke_kem::AuthEncap()`), where `skS` is the private key corresponding
/// to `pkS`. In other words, at most two entities (precisely two, in the case
/// of DHKEM) could have produced this secret, so if the recipient is at most one, then
/// the sender is the other with overwhelming probability.
///
/// The primary difference from the base case is that the calls to
/// `Encap()` and `Decap()` are replaced with calls to [`AuthEncap()`](`hpke_kem::AuthEncap()`) and
/// [`AuthDecap()`](`hpke_kem::AuthDecap()`), which add the sender public key to their internal
/// context string. The function parameters `pkR` and `pkS` are
/// public keys, and `enc` is an encapsulated KEM shared secret.
///
/// Obviously, this variant can only be used with a KEM that provides
/// [`AuthEncap()`](`hpke_kem::AuthEncap()`) and [`AuthDecap()`](`hpke_kem::AuthDecap()`) procedures.
///
/// This mechanism authenticates only the key pair of the sender, not
/// any other identifier. If an application wishes to bind HPKE
/// ciphertexts or exported secrets to another identity for the sender
/// (e.g., an email address or domain name), then this identifier should be
/// included in the `info` parameter to avoid identity mis-binding issues [IMB].
///
/// ```text
/// def SetupAuthS(pkR, info, skS):
/// shared_secret, enc = AuthEncap(pkR, skS)
/// return enc, KeyScheduleS(mode_auth, shared_secret, info,
/// default_psk, default_psk_id)
/// ```
///
/// [IMB]: https://doi.org/10.1007/bf00124891
pub fn SetupAuthS(
config: HPKEConfig,
pkR: &HpkePublicKey,
info: &Info,
skS: &PrivateKey,
randomness: Randomness,
) -> SenderContextResult {
let (shared_secret, enc) = AuthEncap(kem(config), pkR, skS, randomness)?;
let key_schedule = KeySchedule(
config,
&shared_secret,
info,
&default_psk(),
&default_psk_id(),
)?;
SenderContextResult::Ok((enc, key_schedule))
}
/// ## Authentication using an Asymmetric Key - Receiver
///
/// See [`SetupAuthS`] for more details.
///
/// ```text
/// def SetupAuthR(enc, skR, info, pkS):
/// shared_secret = AuthDecap(enc, skR, pkS)
/// return KeyScheduleR(mode_auth, shared_secret, info,
/// default_psk, default_psk_id)
/// ```
pub fn SetupAuthR(
config: HPKEConfig,
enc: &EncodedHpkePublicKey,
skR: &HpkePrivateKey,
info: &Info,
pkS: &PublicKey,
) -> ContextResult {
let shared_secret = AuthDecap(kem(config), enc, skR, pkS)?;
let key_schedule = KeySchedule(
config,
&shared_secret,
info,
&default_psk(),
&default_psk_id(),
)?;
ContextResult::Ok(key_schedule)
}
/// ## Authentication using both a PSK and an Asymmetric Key - Sender
///
/// This mode is a straightforward combination of the PSK and
/// authenticated modes. The PSK is passed through to the key schedule
/// as in the former, and as in the latter, we use the authenticated KEM
/// variants.
///
/// ```text
/// def SetupAuthPSKS(pkR, info, psk, psk_id, skS):
/// shared_secret, enc = AuthEncap(pkR, skS)
/// return enc, KeyScheduleS(mode_auth_psk, shared_secret, info,
/// psk, psk_id)
/// ```
///
/// The PSK MUST have at least 32 bytes of entropy and SHOULD be of length `Nh`
/// bytes or longer.
pub fn SetupAuthPSKS(
config: HPKEConfig,
pkR: &HpkePublicKey,
info: &Info,
psk: &Psk,
psk_id: &PskId,
skS: &HpkePrivateKey,
randomness: Randomness,
) -> SenderContextResult {
let (shared_secret, enc) = AuthEncap(kem(config), pkR, skS, randomness)?;
let key_schedule = KeySchedule(config, &shared_secret, info, psk, psk_id)?;
SenderContextResult::Ok((enc, key_schedule))
}
/// ## Authentication using both a PSK and an Asymmetric Key - Receiver
///
/// See [`SetupAuthPSKS`] for more details.
///
/// ```text
/// def SetupAuthPSKR(enc, skR, info, psk, psk_id, pkS):
/// shared_secret = AuthDecap(enc, skR, pkS)
/// return KeyScheduleR(mode_auth_psk, shared_sec
/// ```
pub fn SetupAuthPSKR(
config: HPKEConfig,
enc: &EncodedHpkePublicKey,
skR: &HpkePrivateKey,
info: &Info,
psk: &Psk,
psk_id: &PskId,
pkS: &PublicKey,
) -> ContextResult {
let shared_secret = AuthDecap(kem(config), enc, skR, pkS)?;
let key_schedule = KeySchedule(config, &shared_secret, info, psk, psk_id)?;
ContextResult::Ok(key_schedule)
}
// === Stateful API ===
/// ### Compute Nonce
///
/// The sequence number provides nonce uniqueness: The nonce used for
/// each encryption or decryption operation is the result of XORing
/// `base_nonce` with the current sequence number, encoded as a big-endian
/// integer of the same length as `base_nonce`. Implementations MAY use a
/// sequence number that is shorter than the nonce length (padding on the left
/// with zero), but MUST raise an error if the sequence number overflows.
///
/// ```text
/// def Context<ROLE>.ComputeNonce(seq):
/// seq_bytes = I2OSP(seq, Nn)
/// return xor(self.base_nonce, seq_bytes)
/// ```
pub fn ComputeNonce(aead_id: AEAD, base_nonce: &Nonce, seq: SequenceCounter) -> ByteSeq {
let seq = U32_to_be_bytes(U32(seq));
let Nn = Nn(aead_id);
let mut seq_bytes = ByteSeq::new(Nn);
seq_bytes = seq_bytes.update_slice(Nn - 4, &seq, 0, 4);
base_nonce.clone() ^ seq_bytes
}
/// ## Encryption and Decryption
///
/// HPKE allows multiple encryption operations to be done based on a
/// given setup transaction. Since the public-key operations involved
/// in setup are typically more expensive than symmetric encryption or
/// decryption, this allows applications to amortize the cost of the
/// public-key operations, reducing the overall overhead.
///
/// In order to avoid nonce reuse, however, this encryption must be
/// stateful. Each of the setup procedures above produces a role-specific
/// context object that stores the AEAD and Secret Export parameters.
/// The AEAD parameters consist of:
///
/// * The AEAD algorithm in use
/// * A secret `key`
/// * A base nonce `base_nonce`
/// * A sequence number (initially 0)
///
/// The Secret Export parameters consist of:
///
/// * The HPKE ciphersuite in use
/// * An `exporter_secret` used for the Secret Export interface; see [`Context_Export`].
///
/// All these parameters except the AEAD sequence number are constant.
/// The sequence number provides nonce uniqueness: The nonce used for
/// each encryption or decryption operation is the result of XORing
/// `base_nonce` with the current sequence number, encoded as a big-endian
/// integer of the same length as `base_nonce`. Implementations MAY use a
/// sequence number that is shorter than the nonce length (padding on the left
/// with zero), but MUST raise an error if the sequence number overflows. The AEAD
/// algorithm produces ciphertext that is Nt bytes longer than the plaintext.
/// Nt = 16 for AEAD algorithms defined in this document.
///
/// Encryption is unidirectional from sender to recipient. The sender's
/// context can encrypt a plaintext `pt` with associated data `aad` as
/// follows:
///
/// ```text
/// def ContextS.Seal(aad, pt):
/// ct = Seal(self.key, self.ComputeNonce(self.seq), aad, pt)
/// self.IncrementSeq()
/// return ct
/// ```
///
/// The sender's context MUST NOT be used for decryption. Similarly, the recipient's
/// context MUST NOT be used for encryption. Higher-level protocols re-using the HPKE
/// key exchange for more general purposes can derive separate keying material as
/// needed using use the Secret Export interface; see [`Context_Export`] and
/// [Bidirectional Encryption](`crate#bidirectional-encryption`) for more details.
///
/// It is up to the application to ensure that encryptions and decryptions are
/// done in the proper sequence, so that encryption and decryption nonces align.
/// If [`ContextS_Seal()`] or [`ContextR_Open()`] would cause the `seq` field to
/// overflow, then the implementation MUST fail with an error. (In the pseudocode
/// `Context<ROLE>.IncrementSeq()` fails with an error when `seq` overflows,
/// which causes [`ContextS_Seal()`] and [`ContextR_Open()`] to fail accordingly.)
/// Note that the internal `Seal()` and `Open()`
/// calls inside correspond to the context's [`AEAD`] algorithm.
pub fn ContextS_Seal(
aead_id: AEAD,
context: Context,
aad: &ByteSeq,
pt: &ByteSeq,
) -> Result<(Ciphertext, Context), HpkeError> {
let (key, base_nonce, seq, exp) = context;
let nonce = ComputeNonce(aead_id, &base_nonce, seq);
let ct = AeadSeal(aead_id, &key, &nonce, aad, pt)?;
let seq = IncrementSeq(aead_id, seq)?;
Result::<(Ciphertext, Context), HpkeError>::Ok((ct, (key, base_nonce, seq, exp)))
}
/// ## Stateful open.
///
/// See [ContextR.Open](`ContextS_Seal`) for more details.
///
/// The recipient's context can decrypt a ciphertext `ct` with associated
/// data `aad` as follows:
///
/// ```text
/// def ContextR.Open(aad, ct):
/// pt = Open(self.key, self.ComputeNonce(self.seq), aad, ct)
/// if pt == OpenError:
/// raise OpenError
/// self.IncrementSeq()
/// return pt
/// ```
pub fn ContextR_Open(
aead_id: AEAD,
context: Context,
aad: &ByteSeq,
ct: &ByteSeq,
) -> Result<(ByteSeq, Context), HpkeError> {
let (key, base_nonce, seq, exp) = context;
let nonce = ComputeNonce(aead_id, &base_nonce, seq);
let pt = AeadOpen(aead_id, &key, &nonce, aad, ct)?;
let seq = IncrementSeq(aead_id, seq)?;
Result::<(ByteSeq, Context), HpkeError>::Ok((pt, (key, base_nonce, seq, exp)))
}
/// ### Increment Sequence
///
/// Each encryption or decryption operation increments the sequence number for
/// the context in use.
///
/// ``` text
/// def Context<ROLE>.IncrementSeq():
/// if self.seq >= (1 << (8*Nn)) - 1:
/// raise MessageLimitReachedError
/// self.seq += 1
/// ```
pub fn IncrementSeq(aead_id: AEAD, seq: SequenceCounter) -> Result<SequenceCounter, HpkeError> {
if seq as u128 >= (1u128 << (8 * Nn(aead_id))) - 1u128 {
Result::<SequenceCounter, HpkeError>::Err(HpkeError::MessageLimitReachedError)
} else {
Result::<SequenceCounter, HpkeError>::Ok(seq + 1u32)
}
}
/// ## Secret Export
///
/// HPKE provides an interface for exporting secrets from the encryption context
/// using a variable-length PRF, similar to the TLS 1.3 exporter interface
/// (see [RFC8446], Section 7.5). This interface takes as input a context
/// string `exporter_context` and a desired length `L` in bytes, and produces
/// a secret derived from the internal exporter secret using the corresponding
/// KDF Expand function. For the KDFs defined in this specification, `L` has
/// a maximum value of `255*Nh`. Future specifications which define new KDFs
/// MUST specify a bound for `L`.
///
/// The `exporter_context` field has a maximum length that depends on the KDF
/// itself, on the definition of `LabeledExpand()`, and on the constant labels
/// used together with them. See [KDF Input Length](mod@hpke_kdf#input-length-restrictions)
/// for precise limits on this length.
///
/// ```text
/// def Context.Export(exporter_context, L):
/// return LabeledExpand(self.exporter_secret, "sec",
/// exporter_context, L)
/// ```
///
/// Applications that do not use the encryption API in [`ContextS_Seal`] can use
/// the export-only AEAD ID `0xFFFF` when computing the key schedule. Such
/// applications can avoid computing the `key` and `base_nonce` values in the
/// key schedule, as they are not used by the Export interface described above.
///
/// [RFC8446]: https://www.rfc-editor.org/info/rfc8446
pub fn Context_Export(
config: HPKEConfig,
context: &Context,
exporter_context: &ByteSeq,
L: usize,
) -> HpkeByteSeqResult {
let (_, _, _, exporter_secret) = context;
let HPKEConfig(_, _, kdf_id, _) = config;
LabeledExpand(
kdf_id,
&suite_id(config),
exporter_secret,
&sec_label(),
exporter_context,
L,
)
}
// === Singe-Shot API ===
/// ## Encryption
///
/// In many cases, applications encrypt only a single message to a recipient's
/// public key. This section provides templates for HPKE APIs that implement
/// stateless "single-shot" encryption and decryption using APIs specified in
/// [`SetupBaseS()`] and [`ContextS_Seal`]:
///
/// ```text
/// def Seal<MODE>(pkR, info, aad, pt, ...):
/// enc, ctx = Setup<MODE>S(pkR, info, ...)
/// ct = ctx.Seal(aad, pt)
/// return enc, ct
/// ```
///
/// The `MODE` template parameter is one of Base, PSK, Auth, or AuthPSK. The optional parameters
/// indicated by "..." depend on `MODE` and may be empty.
///
/// This function takes the `<MODE>` as argument in [`HPKEConfig`].
pub fn HpkeSeal(
config: HPKEConfig,
pkR: &HpkePublicKey,
info: &Info,
aad: &AdditionalData,
ptxt: &ByteSeq,
psk: Option<Psk>,
psk_id: Option<PskId>,
skS: Option<HpkePrivateKey>,
randomness: Randomness,
) -> Result<HPKECiphertext, HpkeError> {
let HPKEConfig(mode, _kem, _kdf, aead) = config;
let (enc, (key, nonce, _, _)) = match mode {
Mode::mode_base => SetupBaseS(config, pkR, info, randomness),
Mode::mode_psk => SetupPSKS(
config,
pkR,
info,
&psk.unwrap(),
&psk_id.unwrap(),
randomness,
),
Mode::mode_auth => SetupAuthS(config, pkR, info, &skS.unwrap(), randomness),
Mode::mode_auth_psk => SetupAuthPSKS(
config,
pkR,
info,
&psk.unwrap(),
&psk_id.unwrap(),
&skS.unwrap(),
randomness,
),
}?;
let ct = AeadSeal(aead, &key, &nonce, aad, ptxt)?;
Result::<HPKECiphertext, HpkeError>::Ok(HPKECiphertext(enc, ct))
}
/// ## Decryption
///
/// See [`HpkeSeal`] for more details.
///
/// ```text
/// def Open<MODE>(enc, skR, info, aad, ct, ...):
/// ctx = Setup<MODE>R(enc, skR, info, ...)
/// return ctx.Open(aad, ct)
/// ```
///
/// This function takes the `<MODE>` as argument in [`HPKEConfig`].
pub fn HpkeOpen(
config: HPKEConfig,
ctxt: &HPKECiphertext,
skR: &HpkePrivateKey,
info: &Info,
aad: &AdditionalData,
psk: Option<Psk>,
psk_id: Option<PskId>,
pkS: Option<HpkePublicKey>,
) -> HpkeByteSeqResult {
let HPKEConfig(mode, _kem, _kdf, aead) = config;
let HPKECiphertext(enc, ct) = ctxt;
let (key, nonce, _, _) = match mode {
Mode::mode_base => SetupBaseR(config, enc, skR, info),
Mode::mode_psk => SetupPSKR(config, enc, skR, info, &psk.unwrap(), &psk_id.unwrap()),
Mode::mode_auth => SetupAuthR(config, enc, skR, info, &pkS.unwrap()),
Mode::mode_auth_psk => SetupAuthPSKR(
config,
enc,
skR,
info,
&psk.unwrap(),
&psk_id.unwrap(),
&pkS.unwrap(),
),
}?;
let ptxt = AeadOpen(aead, &key, &nonce, aad, ct)?;
HpkeByteSeqResult::Ok(ptxt)
}
/// ## "single-shot" secret export sender
///
/// ```text
/// def SendExport<MODE>(pkR, info, exporter_context, L, ...):
/// enc, ctx = Setup<MODE>S(pkR, info, ...)
/// exported = ctx.Export(exporter_context, L)
/// return enc, exported
/// ```
pub fn SendExport(
config: HPKEConfig,
pkR: &HpkePublicKey,
info: &Info,
exporter_context: &ByteSeq,
L: usize,
psk: Option<Psk>,
psk_id: Option<PskId>,
skS: Option<HpkePrivateKey>,
randomness: Randomness,
) -> Result<HPKECiphertext, HpkeError> {
let HPKEConfig(mode, _kem, _kdf, _aead) = config;
let (enc, ctx) = match mode {
Mode::mode_base => SetupBaseS(config, pkR, info, randomness),
Mode::mode_psk => SetupPSKS(
config,
pkR,
info,
&psk.unwrap(),
&psk_id.unwrap(),
randomness,
),
Mode::mode_auth => SetupAuthS(config, pkR, info, &skS.unwrap(), randomness),
Mode::mode_auth_psk => SetupAuthPSKS(
config,
pkR,
info,
&psk.unwrap(),
&psk_id.unwrap(),
&skS.unwrap(),
randomness,
),
}?;
let exported = Context_Export(config, &ctx, exporter_context, L)?;
Result::<HPKECiphertext, HpkeError>::Ok(HPKECiphertext(enc, exported))
}
/// ## "single-shot" secret export receiver
///
/// ``` text
/// def ReceiveExport<MODE>(enc, skR, info, exporter_context, L, ...):
/// ctx = Setup<MODE>R(enc, skR, info, ...)
/// return ctx.Export(exporter_context, L)
/// ```
pub fn ReceiveExport(
config: HPKEConfig,
ctxt: &HPKECiphertext,
skR: &HpkePrivateKey,
info: &Info,
exporter_context: &ByteSeq,
L: usize,
psk: Option<Psk>,
psk_id: Option<PskId>,
pkS: Option<HpkePublicKey>,
) -> HpkeByteSeqResult {
let HPKEConfig(mode, _kem, _kdf, _aead) = config;
let HPKECiphertext(enc, _ct) = ctxt;
let ctx = match mode {
Mode::mode_base => SetupBaseR(config, enc, skR, info),
Mode::mode_psk => SetupPSKR(config, enc, skR, info, &psk.unwrap(), &psk_id.unwrap()),
Mode::mode_auth => SetupAuthR(config, enc, skR, info, &pkS.unwrap()),
Mode::mode_auth_psk => SetupAuthPSKR(
config,
enc,
skR,
info,
&psk.unwrap(),
&psk_id.unwrap(),
&pkS.unwrap(),
),
}?;
Context_Export(config, &ctx, exporter_context, L)
}
// // === WASM API - NOT HACSPEC === //
// use wasm_bindgen::prelude::*;
// /// ## WASM key gen API.
// ///
// /// This function exposes a simplified API to be called from WASM and panics on
// /// any error.
// ///
// /// It generates x25519 keys sk||pk.
// #[cfg(feature = "wasm")]
// #[wasm_bindgen]
// pub fn hpke_key_gen(randomness: &[u8]) -> Vec<u8> {
// let (sk, pk) = GenerateKeyPair(
// KEM::DHKEM_X25519_HKDF_SHA256,
// ByteSeq::from_public_slice(&randomness),
// )
// .unwrap();
// let mut out = sk.into_native();
// out.append(&mut pk.into_native());
// out
// }
// /// ## WASM single-shot HPKE seal.
// ///
// /// This function exposes a simplified API to be called from WASM and panics on
// /// any error.
// ///
// /// It uses x25519 as KEM, SHA256 as hash function and Chacha20Poly1305 as AEAD.
// #[cfg(feature = "wasm")]
// #[wasm_bindgen]
// pub fn hpke_seal_base(
// pkR: &[u8],
// info: &[u8],
// aad: &[u8],
// pt: &[u8],
// randomness: &[u8],
// ) -> Vec<u8> {
// let HPKECiphertext(enc, ct) = HpkeSeal(
// HPKEConfig(
// Mode::mode_base,
// KEM::DHKEM_X25519_HKDF_SHA256,
// KDF::HKDF_SHA256,
// AEAD::ChaCha20Poly1305,
// ),
// &ByteSeq::from_public_slice(pkR),
// &ByteSeq::from_public_slice(info),
// &ByteSeq::from_public_slice(aad),
// &ByteSeq::from_public_slice(pt),
// None,
// None,
// None,
// ByteSeq::from_public_slice(&randomness),
// )
// .unwrap();
// let mut out = enc.into_native();
// out.append(&mut ct.into_native());
// out
// }
// /// ## WASM single-shot HPKE open.
// ///
// /// This function exposes a simplified API to be called from WASM and panics on
// /// any error.
// ///
// /// It uses x25519 as KEM, SHA256 as hash function and Chacha20Poly1305 as AEAD.
// #[cfg(feature = "wasm")]
// #[wasm_bindgen]
// pub fn hpke_open_base(ctxt: &[u8], enc: &[u8], skR: &[u8], info: &[u8], aad: &[u8]) -> Vec<u8> {
// let ct = HPKECiphertext(
// ByteSeq::from_public_slice(enc),
// ByteSeq::from_public_slice(ctxt),
// );
// let pt = HpkeOpen(
// HPKEConfig(
// Mode::mode_base,
// KEM::DHKEM_X25519_HKDF_SHA256,
// KDF::HKDF_SHA256,
// AEAD::ChaCha20Poly1305,
// ),
// &ct,
// &ByteSeq::from_public_slice(skR),
// &ByteSeq::from_public_slice(info),
// &ByteSeq::from_public_slice(aad),
// None,
// None,
// None,
// )
// .unwrap();
// pt.into_native()
// }