
Enabling High Assurance
Cryptographic Software

hax
Karthikeyan Bhargavan, Lucas Franceschino, Lasse Letager Hansen,
Franziskus Kiefer, Jonas Schneider-Bensch, and Bas Spitters

1

2

hax: A Tool Framework for Rust Verification

● Accepts a large subset of safe Rust
○ Including hacspec, a purely functional spec language in Rust

(presented at RustVerify’21)

● Translates it to formal models in F* or Coq, SSProve, ProVerif
○ Upcoming backends for EasyCrypt, Lean, …

● Usable and pragmatic design choices, not dogmatic

● Verify panic-freedom, correctness, security,...
for the Rust code you care about,
using the tool of your choice.

3

4

Coming Up

● A portable, verified Rust implementation of NIST’s ML-KEM
● Versatility of the Coq / SSProve backends:

○ Verifiable equivalence between Rust code and a verified
assembly implementation

○ Formally verified guarantees for smart contracts in Rust
● The first TLS implementation in Rust with symbolic security

guarantees based on the implementation itself, not a separate
specification

5

Verified ML-KEM using F*

7

hax: Correctness Process

1. hax attributes for “design by
contract”

2. F* statically checks that the
properties hold

hax: Correctness Process

8

Secret Independence

Static analysis of forbidden operations

● arithmetic operations with input-dependent timing (e.g. division) over secret
integers

● comparison over secret values

● branching over secret values

● array or vector accesses at secret indices

9

Timing issues in PQ-Crystals reference code

10

Timing issues in PQ-Crystals reference code

11

https://cryspen.com/post/ml-kem-verification/ 12

https://cryspen.com/post/ml-kem-verification/

Leverage existing work:
Coq & SSProve

The Last Yard

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography. CPP’24.
Philipp G. Haselwarter, Benjamin Salling Hvass, Lasse Letager Hansen, Théo Winterhalter, Cătălin Hrițcu, Bas Spitters. 14

https://eprint.iacr.org/2023/185

Verification of Smart Contracts

● Model smart contracts as state
machines, using hax attribute

● Translate to SSProve
● Leverage existing work: ConCert a

smart contract verification
framework in Coq

Specifying Smart Contract with Hax and ConCert. CoqPL’24.
Lasse Letager Hansen, Bas Spitters. 15

https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert

Protocol Verification using
ProVerif

Multi-Backend use of hax: TLS 1.3

● Bertie is a minimal, high-assurance
implementation of TLS 1.3 that aims to be
verification friendly

● An ongoing example of simultaneous
translation to F* as well as ProVerif https://github.com/cryspen/bertie

for Correctness

for Security

17

https://github.com/cryspen/bertie

What’s ProVerif?

● Fully automated protocol verification tool, which
accepts a variant of Pi-Calculus as input
language which is translated to Horn clauses

● Allows analysis of Reachability, Correspondence
and Observational Equivalence properties in a
purely symbolic (Dolev-Yao) security model

● Has previously been used to analyze many real
world protocols for security issues, based on
their specifications, e.g. TLS1.3, Signal …

https://bblanche.gitlabpages.inria.fr/proverif/

18

https://bblanche.gitlabpages.inria.fr/proverif/

Applied Pi-Calculus

● No data structures, only constructors and destructors on terms
● No support for associative operations

○ concat(A, concat(B, C)) != concat(concat(A, B), C)
● No Result / Option types, model blocks on failure to destruct term
● No polymorphism of any kind

19

type secret_key.
type public_key.
type message.

fun pk_from_sk(secret_key): public key.
fun enc(public_key, message): ciphertext.
reduc forall sk: secret_key, msg: message;

dec(sk, enc(pk_from_sk(sk), msg)) = msg.

TLS 1.3 Handshake in Applied Pi-Calculus

20

let Client() =
let (CH,KS) =

client_init() in
out(c, (CH, KS));
in(c, (KS, CV, SF));

…

let Server() =
in(c, (CH,KS));
let (KS, CV, SF) =

server_init() in
out(c, (KS, CV, SF));

…

process
Client() | Server()

TLS 1.3 Handshake Security

21

ProVerif Queries
Query event(ClientFinished(...)) ==> event(ServerFinished(...))

|| CompromisedServerCertSK(...) || CompromisedServerPSK(...) is true.

22

ProVerif Queries
Query event(ClientFinished(...)) ==> event(ServerFinished(...)) is false.

23

Overview of ProVerif Extraction

● Ca. 4000 lines of extracted ProVerif code for 900 lines of Rust
handshake code (+ its dependencies):
○ Reachability of all parts of handshake
○ Server authentication
○ Secrecy of derived session key
○ (given handwritten models for handshake data en-/decoding & crypto primitives)

● No security issues found during verification, but 1 logic bug
● On F* side: Panic freedom, scope excludes certificate parsing and

HTTPS application code but complements ProVerif analysis

24

Takeaways for this Talk

● hax offers an undogmatic approach to Rust Verification
○ Driven by real implementations
○ Allows you to use the right tool for the given job
○ Different verification methodologies can complement each other using hax

● Ongoing Efforts & Improvements
○ Bubble-up proof assistant error messages
○ IDE integration
○ More backends…
○ For your favorite verification tool?

25

https://github.com/hacspec/hax

jonas@cryspen.com

https://github.com/hacspec/hax

Translating Functions to Process Macros

26

ProVerif Events

27

Auto-generating Constructors

28

29

ProVerif Boilerplate

30

