
Karthikeyan Bhargavan

Joint work with many others at Inria, Cryspen, MSR, U. Porto, U. Aarhus, and elsewhere

towards high assurance
cryptographic software

The Golden Age of Crypto?

New Constructions Post-Quantum Crypto, Homomorphic Encryption, …
New Protocols Group Messaging, IoT Software Updates, …
New Applications Blockchains, Privacy-Preserving Machine Learning, …

Designing Secure Protocols Is Still Hard

https://breakingthe3ma.app

● Don’t roll your own crypto protocol
● Beware of cross-protocol interactions
● Formally analyze your protocol design

Usenix 2023

using a (semi-automated) verification tool

Formal Analysis during Protocol Design

Crypto Constructions HPKE, …
Crypto Protocols TLS 1.3, MLS, …

The TLS 1.3 experiment [2014-2018]

Multi-year effort to redesign IETF Transport Layer Security
● 4 years, 28 drafts, 12 IETF meetings

Major contributions from academic security researchers
● Cryptographic analyses and proofs (of drafts 5,9,10)

[Dowling et al. CCS’15-J.Crypt 2021, Jager et al. CCS’15, Krawczyk et al. Euro S&P’16, ...]
● Mechanized cryptographic proofs (of draft 18) with CryptoVerif

[Bhargavan et al. S&P’17]
● Automated symbolic protocol analysis with Tamarin and ProVerif

[Cremers et al. Oakland’16 + CCS’17, Bhargavan et al. S&P’17 + CCS’22]
● Verified implementation code in F*

[Bhargavan et al. S&P’17 and S&P’17]

The TLS 1.3 experiment [2014-2018]

Multi-year effort to redesign IETF Transport Layer Security
● 4 years, 28 drafts, 12 IETF meetings

Major contributions from academic security researchers
● Cryptographic analyses and proofs (of drafts 5,9,10)

[Dowling et al. CCS’15-J.Crypt 2021, Jager et al. CCS’15, Krawczyk et al. Euro S&P’16, ...]
● Mechanized cryptographic proofs (of draft 18) with CryptoVerif

[Bhargavan et al. S&P’17]
● Automated symbolic protocol analysis with Tamarin and ProVerif

[Cremers et al. Oakland’16 + CCS’17, Bhargavan et al. S&P’17 + CCS’22]
● Verified implementation code in F*

[Bhargavan et al. S&P’17 and S&P’17]

ACM CCS 2023

How to encrypt a message?

Encrypt a symmetric key using a peer’s public key
○ Standard PKE/KEM. Just use RSA, ECIES, PQ-KEM?

pkBskA

Long messages? A stream of messages?

Sender authentication? PKE with Associated Data?

https://tech.cryspen.com/hpke-spec/hpke/index.html

https://tech.cryspen.com/hpke-spec/hpke/index.html

HPKE: Agile, Modular Construction

HPKE Proof using CryptoVerif

EuroCrypt 2022

How to encrypt group messages?

Use HPKE to encrypt message N times?

● Sender Keys: KEM key to N recipients, Sign every message
● O(N) computation for key changes

pkDskA pkB pkC

TreeKEM: keys for a tree of subgroups
[Bhargavan, Barnes, Rescorla, 2018]

TreeKEM: keys for a tree of subgroups

Update B’s Key

TreeKEM: keys for a tree of subgroups

Maintain a tree of subgroup keys with efficient updates

○ Add is O(1), Remove and Update are O(log n)

Decomposing Messaging Layer Security

TreeSync synchronize membership and tree

TreeKEM derive, encapsulate subgroup keys

TreeDEM encrypt application messages

Decomposing Messaging Layer Security

TreeSync synchronize membership and tree TREE HASH + SIG
(authentication, integrity)

TreeKEM derive, encapsulate subgroup keys HPKE + KDF
(forward secrecy,
 post-compromise security)

TreeDEM encrypt application messages KDF + AEAD + SIG
(forward secrecy, sender auth)

Decomposing Messaging Layer Security

TreeSync synchronize membership and tree TREE HASH + SIG
(authentication)

TreeKEM derive, encapsulate subgroup keys HPKE + KDF
(forward secrecy and
 post-compromise security)

TreeDEM encrypt application messages KDF + AEAD + SIG
(forward secrecy) Usenix 2023

Many Ongoing Analyses of IETF MLS

From: On The Insider Security of MLS, Alwen et al. CRYPTO 2022

Verifying Crypto Implementations

Verified Crypto Code HACL*, Vale, libjade, libcrux, …
Verified Protocol Code miTLS, LibSignal*, Noise*, MLS*, …

CRYPTO
LIBRARIES

BoringSSL
NSS

Web Lang

OS IoT

TRUSTED (?)
COMPUTING

BASE

IoT

BoringSSL
NSS

Web

OS

Lang

12

10

 6

Many Bugs in Classic Crypto Code

https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/

Many Bugs in Classic Crypto Code

https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/

VERIFIED
CRYPTO

LIBRARIES

Vale

x86_64
AEAD, Hash,
Field Arith

HACL*

Portable C
EC, AEAD, DH,
Hash, Sig, PQC libjade

x86_64
AEAD, Hash,
EC, PQC

FiatC, Rust, Go
Field Arith

AUCurves
Rust
EC, BLS

Cryptol/SAW

C, Java
EC, AEAD,
Hash, PQC

CryptoLine
C, asm
Field Arith

EasyCrypt
F*

Coq SAT/SMT

Good news: For any modern crypto algorithm,
there is probably a verified implementation.

But… research code with low-level APIs, and
specs written in unfamiliar formal languages.

Verified
Cryptography
Workflow

In English +
Pseudocode

IETF RFC or
NIST Standard

+ Test Vectors

F* Spec
(HACL*)

EasyCrypt Spec
(libjade)

F* Implementation

Portable C Code

Translate

Translate

Jasmin
Implementation

Translate

Intel AVX2
 Assembly

F* or Coq or
EasyCrypt…

Potential Implementation Bug
● Memory Safety Violation
● Functional Correctness Flaw
● Side Channel Vulnerability

Deploy Code Fix and re-verify

Verified
Cryptography
Workflow

Good news: For any modern crypto algorithm,
there is probably a verified implementation

● You don’t have to sacrifice performance
● Mechanized proofs that you can run and re-run yourself
● You (mostly) don’t have to read or understand the proofs

But… not always easy to use, extend, or
 combine code from different libraries

● You do need to carefully audit the formal specs, written in
tool-specific spec languages like F*, Coq, EasyCrypt

● You do need to safely use their low-level APIs,
which often embed subtle pre-conditions

hacspec: a tool-independent spec language

Design Goals

● Easy to use for crypto developers
● Familiar language and tools
● Succinct specs, like pseudocode
● Strongly typed to avoid spec errors
● Executable for spec debugging
● Testable against RFC test vectors
● Translations to formal languages like

 F*, Coq, EasyCrypt, …

hacspec: a tool-independent spec language

Design Goals

● Easy to use for crypto developers
● Familiar language and tools
● Succinct specs, like pseudocode
● Strongly typed to avoid spec errors
● Executable for spec debugging
● Testable against RFC test vectors
● Translations to formal languages like

 F*, Coq, EasyCrypt, …

A purely functional subset of Rust

● Safe Rust without external side-effects
● No mutable borrows
● All values are copyable
● Rust tools & development environment
● A library of common abstractions

○ Arbitrary-precision Integers
○ Secret-independent Machine Ints
○ Vectors, Matrices, Polynomials,...

Language and Toolchain Details: hacspec.org

https://hacspec.org

hacspec: purely functional crypto code in Rust

ChaCha20 RFC ChaCha20 in
hacspec

Call-by-value

State-passing style

hacspec: abstract integers for field arithmetic

Poly1305 RFC
(update_block)

Poly1305 in
hacspec

Modular 130-bit Prime Field Arithmetic

Modular Arithmetic over User-Defined Field

hacspec: secret integers for “constant-time” specs

AES in
hacspec

ChaCha20 in
hacspec

Separate Secret and Public Values

● New types: U8, U32, U64, U128
● Can do arithmetic: +, *, -
● Can do bitwise ops: ^, |, &
● Cannot do division: /, %
● Cannot do comparison: ==, !=, <, …
● Cannot use as array indexes: x[u]

Enforces secret independence

● A “constant-time” discipline
● Important for some crypto specs

hacspec: translation to formal languages

ChaCha20 in
hacspec

F* Spec

Coq Spec

EasyCrypt SpecActive development: github.com/hacspec

https://github.com/hacspec

hacspec: towards high-assurance crypto software

hacspec: towards high-assurance crypto software

hacspec: towards high-assurance crypto software

libcrux: a library of verified cryptography

libcrux: architecture

Unsafe APIs: Array Constraints

Fixed Length

Disjoint

Verified F* API: Preconditions

Length Constraints

Verified F* API: Preconditions

Disjointness Constraints

libcrux: Typed Rust APIs

Crypto Standard Platforms Specs Implementations

ECDH
● x25519
● P256

Portable + Intel ADX
Portable

hacspec, F*
hacspec, F*

HACL*, Vale
HACL*

AEAD
● Chacha20Poly1305
● AES-GCM

Portable + Intel/ARM SIMD
Intel AES-NI

hacspec, F*, EasyCrypt
hacspec, F*

HACL*, libjade
Vale

Signature
● Ed25519
● ECDSA P256
● BLS12-381

Portable
Portable
Portable

hacspec, F*
hacspec, F*

hacspec, Coq

HACL*
HACL*

AUCurves

Hash
● Blake2
● SHA2
● SHA3

Portable + Intel/ARM SIMD
Portable
Portable + Intel SIMD

hacspec, F*
hacspec, F*

hacspec, F*, EasyCrypt

HACL*
HACL*

HACL*, libjade

HKDF, HMAC Portable hacspec, F* HACL*

HPKE Portable hacspec hacspec

libcrux Rust Crypto Ring OpenSSL

Sha3 256 574.39 MiB/s 573.89 MiB/s unsupported 625.37 MiB/s

x25519 30.320 µs 35.465 µs 30.363 µs 32.272 µs

libcrux: performance

libcrux Rust Crypto Ring OpenSSL

Sha3 256 337.67 MiB/s 275.05 MiB/s unsupported 322.21 MiB/s

x25519 37.640 µs 67.660 µs 71.236 µs 48.620 µs

Intel Kaby Lake (ADX, AVX2)

Apple Arm M1 Pro (Neon)

libjade HACL* + Vale

HACL*

Building HPKE over libcrux

Ongoing Work: more proof backends for hacspec

Security Analysis Tools

● SSProve: modular crypto proofs
● EasyCrypt: verified constructions

● ProVerif: symbolic protocol proofs
● CryptoVerif: verified protocols
● Squirrel: protocol verifier

Program Verification Tools

● QuickCheck: logical spec testing
● Creusot: verifying spec contracts
● Aeneas: verifying Rust code

● LEAN: verification framework
● <Your favourite prover here>

Conclusions

● Protocol verification tools are available for analyzing real-world protocols
○ Symbolic analyzers (ProVerif, Tamarin, DY*)
○ Computational provers (CryptoVerif, EasyCrypt, Squirrel, SSProve)
○ Many case studies (HPKE, MLS, TLS 1.3, Noise, Signal)

● Fast verified code is available for most modern crypto algorithms
○ Portable C (HACL*, Fiat-Crypto), Assembly (Vale, libjade, CryptoLine)
○ Ongoing work: PQC, ZKP, FHE, MPC, …

● hacspec is a common spec language for multiple verification tools
○ Try it: hacspec.org

● libcrux provides safe Rust APIs to multiple verified crypto libraries
○ Try it: libcrux.org

https://hacspec.github.io/
https://github.com/cryspen/libcrux

Thanks!

● HACL*: https://github.com/hacl-star/hacl-star
● Vale: https://github.com/project-everest/vale
● libjade: https://github.com/formosa-crypto/libjade
● AUCurves: https://github.com/AU-COBRA/AUCurves
● hacspec: https://github.com/hacspec/hacspec
● libcrux: https://github.com/cryspen/libcrux

We are hiring R&D crypto/proof engineers at Inria and Cryspen. Get in touch!

https://github.com/hacl-star/hacl-star
https://github.com/project-everest/vale
https://github.com/formosa-crypto/libjade
https://github.com/AU-COBRA/AUCurves
https://github.com/hacspec/hacspec
https://github.com/cryspen/libcrux

