
Karthikeyan Bhargavan

Joint work with Rolfe Schmidt (Signal), Charlie Jacomme (Inria), Franziskus Kiefer (Cryspen),
Goutam Tamvada (Cryspen), Lucas Franceschino (Cryspen), Jonathan Protzenko (MSR), …

MatchPoints 2024, Aarhus

High Assurance
Post Quantum Cryptography

Formal verification can
speed development
and clarify security of
real world systems.

This is important as many
applications are being
updated to provide
Post-Quantum security.

4

Let’s see how this
process worked with
the PQ transition of
Signal Messenger

The Signal Messaging Protocol

The Signal Protocol

Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4)

DH1 DH2

DH3

DH4

The Signal Protocol

Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4)

DH1 DH2

DH3

DH4

Contingent on Diffie-Hellman
assumptions - quantum fragile!

Signal is vulnerable to
any future discrete
logarithm solver -
quantum or classical.

Harvest Now, Decrypt Later
(HNDL) attacks:

Messages sent today
are vulnerable to
quantum attackers tomorrow

The PQXDH Key Agreement Protocol

PQXDH Protocol Requirements

● Provide HNDL protection against future DL solvers
● No loss of current DH-based security guarantees

Non-goal: Protect against active quantum attackers

To achieve this we need to add PQ
crypto to the X3DH handshake.

A simple idea:

Take X3DH and
add in a PQ-KEM
encapsulated shared secret.

PQXDH Design

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

After computing SK, Alice sends to Bob:
● (C, CTKEM, EKA

PK) where
● C = AEAD.Enc(SK, msg, AD = IKA

PK
 ॥ IKB

PK)

Bob processes the message by:
● Using their EC keys to compute the DH’s
● Using their KEM key to decapsulate SS
● Computing SK
● Computing AEAD.Dec(SK, C, AD)

If the decryption succeeds, we have key agreement.

Does PQXDH
achieve its goals?

We need to
formally verify it.

Formally Modelling PQXDH

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

Our Formal Verification Methodology

What We Model
Single Message PQXDH Protocol

● Arbitrary number of PQXDH endpoints
● Any endpoint can play any role
● (Out-of-Band) Identity Key Verification
● Untrusted Key Distribution Server

Compromise Scenarios

● Identity keys can be leaked at any time
● OPK, EK, and PQPK can be leaked

for certain security goals
● Quantum adversary has explicit power

to break all DH primitives

Symbolic Analysis with ProVerif

Symbolic (Dolev-Yao) Crypto Model

● “Perfect” crypto primitives
● Unbounded number of sessions
● Previously used for Signal, TLS 1.3, …

Quantum Adversary Model

● Adversary can invert DH

Security Analysis

● Queries for authentication and secrecy
● Fully automated analysis
● Finds attacks or establishes a theorem
● Easy to quickly test fixes

(* Post-Quantum Forward Secrecy Query *)
query A, B, spk, pqpk, sk, i, j;

event(BlakeDone(A,B,spk,pqpk,sk))@i
⇒ not(attacker(sk))
 | (event(LongTermComp(A))@j & j < i)
 | (event(QuantumComp)@j & j < i)

Attack Trace:

1. Using the function info_x25519_sha512_kyber1024 the attacker may obtain
info_x25519_sha512_kyber1024.
attacker(info_x25519_sha512_kyber1024).

2. Using the function zeroes_sha512 the attacker may obtain zeroes_sha512.
attacker(zeroes_sha512).

3. We assume as hypothesis that
attacker(a).

4. We assume as hypothesis that
attacker(b).

5. The message b that the attacker may have by 4 may be received at input {2}.
So the entry identity_pubkeys(b,SMUL(IK_s_2,G)) may be inserted in a table at insert {6}.
table(identity_pubkeys(b,SMUL(IK_s_2,G))).
 …

20. By 19, the attacker may know penc(SMUL(SPKB_s_3,G),ss_1).
Using the function weakECasKEM the attacker may obtain ss_1.
attacker(ss_1).

…

And so on

Computational Proofs with CryptoVerif

Computational Crypto Model

● Precise Cryptographic Assumptions
● Probabilistic Polynomial-Time Adversary

Quantum Adversary Model

● Adversary can (passively) break DH
● Uses new Post-Quantum Soundness

results for CryptoVerif proofs

Security Analysis

● Queries for authentication and secrecy
● Game-based machine-checked proofs
● Similar guarantees to pen-and-paper proofs
● Requires manual guidance

Finding and Confirming Weaknesses

Key Confusion Attack

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

Attacker swaps keys and
signatures

{PQPKB}

{SPKB}

Key Confusion Attack

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

{PQPKB}

{SPKB}

Now Alex computes :
(SS, CT) = KEM.Encaps(SPKB

PK)

Without further assumptions about
KEM this is an insecure computation.

Given CT the attacker can now
compute SS.

We lose PQ security.

This is representative of a general
class of cross-protocol attacks
between classical and PQ crypto.

Fix: Ensure all key encodings
have disjoint co-domains.

KEM Re-encapsulation Vulnerability

Robbie

PQPKB
1

Attacker re-encrypts a PQ-KEM ciphersuite for another key to
confuse the recipient and break session independence

Alex

Runs protocol
 …

(CT, SScomp)
 = KEM.Enc(PQPKB

1)
…

send compromised CT.
SScomp =
 KEM.Dec(PQPKB

1, CT)
CTcomp =
 ReEnc(SScomp,PQPKB

2)

PreKeyBundle(...,
PQPKB

1,...)

PQXDHMessage(...,
CT,...)

SScomp PreKeyBundle(...,
PQPKB

2,...)

Blake

PQXDHMessage(...,
CTcomp,...)

Blake completes protocol
with compromised secret:

SScomp =
 KEM.Dec(PQPKB

2, CTcomp)

Re-encapsulation can happen
without violating the usual
IND-CCA assumption for the KEM.

A New Revision of PQXDH

The Deployed Signal Protocol was Secure

The open-source messenger app was never vulnerable:

● No Key Confusion:
Signal’s key encodings have disjoint co-domains

● No KEM Re-Encapsulation:
Kyber public keys are hashed into the KEM shared secret

But we still want to strengthen the protocol specification.

The findings led to a new revision of the protocol:

● We added AEAD as a parameter and required it to be post-quantum IND-CPA
and INT-CTXT

● Added description of key identifier use
● Restricted the ranges of encodings to be disjoint
● Added PQPKB

PK to AD when it isn’t contributory to the KEM

Not security relevant

PQXDH Version 2 (one month later)

Prevent Key Confusion Attack

Prevent KEM Re-encapsulation Attack

With these changes we proved security theorems that PQXDH meets its
security requirements in the symbolic, computational, and PQ HNDL models.

But is the Signal Implementation Secure?

35

36

Formally Verifying the new
ML-KEM cryptographic implementation

Using the hax toolchain

37

38

hax
verification
toolchain

39

Verifying Rust Code
with hax and F*

Writing Crypto Code in Rust

40

Barrett Reduction: computes input % 3329
(in constant time)

41

Potential Panics in Rust Code

These arithmetic operations may overflow or underflow
causing the code to panic at run-time

Expected behaviour: result ≈ input % 3329
42

Proving Panic Freedom and Correctness in F*

Enforcing Secret Independence

Static analysis of forbidden operations

● arithmetic operations with input-dependent timing
(e.g. division) over secret integers

● comparison over secret values

● branching over secret values

● array or vector accesses at secret indices

43

A New Timing Vulnerability in ML-KEM libraries

44

Bug in PQ-Crystals,
PQ-Clean, …

(also used in Signal)

We built an optimized, portable,
formally verified implementation
of ML-KEM in Rust and C

Conclusion

● The PQ transition is about more than just swapping in PQ crypto.
● There are many potential pitfalls, as we found in PQXDH and ML-KEM

● Protocol verification can help find and prevent attacks in PQ protocols.
● Software verification can help find and prevent implementation bugs
● Verification can also justify new optimizations to improve performance

● Close collaboration between protocol designers, developers, and proof
engineers can provide quick turnaround and help guide the transition

