1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
//! This module implements "The Simplest Protocol for Oblivious Transfer" due to
//! Orlandi and Chou.
//! (cf. https://eprint.iacr.org/archive/2015/267/1527602042.pdf)
//!
//! The protocol works as follows in an elliptic curve group G with base point `B` and scalars `Scalars`
//!
//! ```text
//! Sender(l, r) Receiver(c)
//! y <-$ Scalars
//! S := yB
//! T := yS -- S --> x <-$ Scalars
//! R := cS + xB
//! <-- R --
//! k_l k = H(S, R, xS)
//! = H(S, R, yR)
//! k_r
//! = H(S, R, yR - T)
//!
//! c_l = E(k_l, l)
//! c_r = E(k_r, r)
//!
//! -- c_l -->
//! -- c_r --> output = D(k, c_l) if decryption successful
//! otherwise output = D(k, c_r)
//! ```
//! We instantiate the primitives as follows:
//! - H: HKDF(SHA-256)
//! - group G: P256
//! - Encryption scheme: Chacha20Poly1305
use hacspec_chacha20poly1305::{ChaChaPolyIV, ChaChaPolyKey};
use hacspec_lib::Randomness;
use p256::{p256_point_mul, p256_point_mul_base, P256Point};
use crate::Error;
/// The state of the sender
pub struct OTSender {
y: p256::P256Scalar,
s: p256::P256Point,
t: p256::P256Point,
dst: Vec<u8>,
}
/// The state of the receiver
pub struct OTReceiver {
x: p256::P256Scalar,
r: p256::P256Point,
s: P256Point,
dst: Vec<u8>,
}
/// The OT sender's first message.
#[derive(Debug)]
pub struct OTSenderInit(p256::P256Point);
/// The OT receiver's first message.
#[derive(Debug)]
pub struct OTReceiverSelect(p256::P256Point);
/// The encryption of an OT input.
#[derive(Debug)]
pub struct OTCiphertext {
iv: ChaChaPolyIV,
ciphertext: Vec<u8>,
tag: [u8; 16],
}
/// The OT sender's second message.
#[derive(Debug)]
pub struct OTSenderSend {
left: OTCiphertext,
right: OTCiphertext,
}
impl OTSender {
/// Generate the first sender message.
///
/// Initiates an OT sender by picking a random P256 scalar `y` and deriving
/// `S = yB` and `T = yS`, where `B` is the P256 base point. These values
/// will later be used to derive encryption keys in the send stage of the
/// protocol. In addition, the domain separation tag `dst`, which will be
/// used in key generation is stored in the receiver and `S` is prepared for
/// sending to the receiver by wrapping it in an `OTSenderInit` message.
pub fn init(entropy: &mut Randomness, dst: &[u8]) -> Result<(Self, OTSenderInit), Error> {
let y = p256::random_scalar(entropy, dst)?;
let s = p256::p256_point_mul_base(y)?;
let t = p256_point_mul(y, s)?;
Ok((
OTSender {
y,
s,
t,
dst: dst.to_vec(),
},
OTSenderInit(s),
))
}
/// Generate the second sender message based on the receiver's selection.
///
/// Given the `OTReceiverSelect` message and the two sender inputs, the
/// sender can generate the transfer messages. It does so by deriving two
/// domain separated encryption keys, based on the values `S` and `T`
/// generated during initiation and on the masked choice bit sent by the
/// receiver. It then encrypts the left and right inputs under their
/// respective keys and prepares an `OTSenderSend` message with both
/// ciphertexts. This finishes the OT session for the sender. By the
/// security of the protocol, the receiver will only be able to generate one
/// of the decryption keys, namely that one corresponding to its choice bit.
pub fn send(
&self,
left_input: &[u8],
right_input: &[u8],
selection: &OTReceiverSelect,
entropy: &mut Randomness,
) -> Result<OTSenderSend, Error> {
debug_assert_eq!(
left_input.len(),
right_input.len(),
"Left and right inputs to the OT must be of the same length."
);
let OTReceiverSelect(r) = selection;
let (left_key, right_key) = self.derive_keys(r)?;
let (left, right) = encrypt_inputs(entropy, left_key, left_input, right_key, right_input);
Ok(OTSenderSend { left, right })
}
/// Derive a pair of encryption keys for creating the `OTSenderSend`
/// message.
///
/// Given the points `S`,`T` from the sender initialization, as well as the
/// masked receiver choice `R`, a pre-key is generated based on `S` and `R`.
/// Then the keys are generated by first extracting
/// `HKDF-SHA256-extract(pre-key||yR)` for the right input and
/// `HKDF-SHA256-extract(pre-key||yR - T)` for the left input where the
/// elliptic curve points are serialized and concatenated to the pre-key and
/// a fixed salt value is used to extract. From this, two 32-byte keys are
/// expanded for use in ChaCha20Poly1305.
fn derive_keys(
&self,
receiver_selection: &p256::P256Point,
) -> Result<(ChaChaPolyKey, ChaChaPolyKey), Error> {
let (salt, ikm) = derive_prk(&self.s, receiver_selection);
let input_right = p256_point_mul(self.y, *receiver_selection)?;
let input_left = p256::point_add(input_right, -self.t)?;
let input_left_serialized = p256::serialize_point(&input_left);
let input_right_serialized = p256::serialize_point(&input_right);
let mut ikm_left = ikm.clone();
let mut ikm_right = ikm;
ikm_left.extend_from_slice(&input_left_serialized);
ikm_right.extend_from_slice(&input_right_serialized);
let prk_left = hmac::hkdf_extract(&salt, &ikm_left);
let prk_right = hmac::hkdf_extract(&salt, &ikm_right);
Ok((
hmac::hkdf_expand(&prk_left, &self.dst, 32)
.try_into()
.expect(
"should have received the right number of bytes, because we requested them",
),
hmac::hkdf_expand(&prk_right, &self.dst, 32)
.try_into()
.expect(
"should have received the right number of bytes, because we requested them",
),
))
}
}
/// Create the pre-key for encrypting and decrypting `OTSenderSend` ciphertexts.
///
/// Based on points `S` and `R`, use `HKDF-SHA256-extract(S||R)` to generate a
/// pre-key with a fixed salt value by serializing and concatenating the points.
fn derive_prk(
sender_commitment: &p256::P256Point,
receiver_selection: &p256::P256Point,
) -> (Vec<u8>, Vec<u8>) {
let serialized_s = p256::serialize_point(sender_commitment);
let serialized_r = p256::serialize_point(receiver_selection);
let salt = b"no-salt";
let mut ikm = Vec::from(serialized_s);
ikm.extend_from_slice(&serialized_r);
(salt.to_vec(), ikm)
}
/// Encrypt the OT sender inputs.
///
/// Using the keys generated by `derive_keys()` encrypt the sender's inputs with
/// Chacha20Poly1305, without any additional authenticated data.
fn encrypt_inputs(
entropy: &mut Randomness,
left_key: [u8; 32],
left_input: &[u8],
right_key: [u8; 32],
right_input: &[u8],
) -> (OTCiphertext, OTCiphertext) {
let left_iv = entropy
.bytes(12)
.expect("sufficient randomness should have been provided externally")
.try_into()
.expect("should have received the right number of bytes, because we requested them");
let right_iv = entropy
.bytes(12)
.expect("sufficient randomness should have been provided externally")
.try_into()
.expect("should have received the right number of bytes, because we requested them");
let (left_enc, left_tag) =
hacspec_chacha20poly1305::chacha20_poly1305_encrypt(left_key, left_iv, &[], left_input);
let (right_enc, right_tag) =
hacspec_chacha20poly1305::chacha20_poly1305_encrypt(right_key, right_iv, &[], right_input);
(
OTCiphertext {
iv: left_iv,
ciphertext: left_enc,
tag: left_tag,
},
OTCiphertext {
iv: right_iv,
ciphertext: right_enc,
tag: right_tag,
},
)
}
impl OTReceiver {
/// Generate the first receiver message.
///
/// Initiates the OT receiver by generating a random P256 Scalar `x` which
/// is used to mask the receivers choice bit `c` of output in the
/// computation of the masked receiver selection `R = cS + xB`, where `S` is
/// obtained from the initial sender message. The values required in the
/// decryption of the sender messages are stored in the `OTReceiver` struct
/// and the masked choice is wrapped in an `OTReceiverSelect` message for
/// sending to the sender.
pub fn select(
entropy: &mut Randomness,
dst: &[u8],
sender_message: OTSenderInit,
choose_left: bool,
) -> Result<(Self, OTReceiverSelect), Error> {
let x = p256::random_scalar(entropy, dst)?;
let OTSenderInit(s) = sender_message;
let mut res = p256_point_mul_base(x)?;
let r = if choose_left {
res = p256::point_add(res, s)?;
res
} else {
res
};
Ok((
OTReceiver {
x,
r,
s,
dst: dst.to_vec(),
},
OTReceiverSelect(r),
))
}
/// Receive the selected input from the sender.
///
/// A decryption key is generated based on the initialization message
/// received from the sender and the masked choice generated during receiver
/// initialization. Then trial-decryption of the sender messages are
/// attempted. Correctness of the protocol guarantees that one decryption
/// will be successful (exactly one, by security of the protocol) and will
/// yield the receiver's chosen output ending the OT session for the
/// receiver.
pub fn receive(&self, sender_message: OTSenderSend) -> Result<Vec<u8>, Error> {
let key = self.derive_key()?;
let dec = hacspec_chacha20poly1305::chacha20_poly1305_decrypt(
key,
sender_message.left.iv,
&[],
&sender_message.left.ciphertext,
sender_message.left.tag,
)
.or_else(|_| {
hacspec_chacha20poly1305::chacha20_poly1305_decrypt(
key,
sender_message.right.iv,
&[],
&sender_message.right.ciphertext,
sender_message.right.tag,
)
});
dec.map_err(|e| e.into())
}
/// Derive a decryption key for trial decrypting the `OTSenderSend`
/// messages.
///
/// Given the point `S` from the initial sender message, as well as the
/// scalar `x` generated during receiver initialization and the masked
/// receiver choice `R`, a pre-key is generated based on `S` and `R`. Then
/// the key is generated by first extracting
/// `HKDF-SHA256-extract(pre-key||xS)` where the elliptic curve points are
/// serialized and concatenated to the pre-key and a fixed salt value is
/// used to extract. From this, a 32-byte key is expanded for use in
/// ChaCha20Poly1305.
fn derive_key(&self) -> Result<ChaChaPolyKey, Error> {
let (salt, mut ikm) = derive_prk(&self.s, &self.r);
let input = p256_point_mul(self.x, self.s)?;
let input_serialized = p256::serialize_point(&input);
ikm.extend_from_slice(&input_serialized);
let prk = hmac::hkdf_extract(&salt, &ikm);
Ok(hmac::hkdf_expand(&prk, &self.dst, 32)
.try_into()
.expect("should have received the required number of bytes because we requested them"))
}
}
#[test]
fn simple() {
use rand::RngCore;
let mut rng = rand::thread_rng();
let mut entropy = [0u8; 88];
rng.fill_bytes(&mut entropy);
let mut entropy = Randomness::new(entropy.to_vec());
let dst = b"test-context";
let left_input = b"lefto";
let right_input = b"right";
let (sender, commitment) = OTSender::init(&mut entropy, dst).unwrap();
let (receiver, selection) = OTReceiver::select(&mut entropy, dst, commitment, false).unwrap();
let send_message = sender
.send(left_input, right_input, &selection, &mut entropy)
.unwrap();
let receiver_output = receiver.receive(send_message).unwrap();
debug_assert_eq!(right_input.to_vec(), receiver_output);
}