1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
//! This module defines the behaviour of protocol parties in the different
//! phases of the protocol.

use hacspec_lib::Randomness;
use hmac::{hkdf_expand, hkdf_extract};

use crate::{
    circuit::Circuit,
    messages::{Message, MessagePayload, SubMessage},
    primitives::{
        auth_share::{AuthBit, Bit, BitID, BitKey},
        commitment::{Commitment, Opening},
        mac::{
            generate_mac_key, hash_to_mac_width, mac, verify_mac, xor_mac_width, Mac, MacKey,
            MAC_LENGTH,
        },
    },
    utils::ith_bit,
    Error, COMPUTATIONAL_SECURITY, STATISTICAL_SECURITY,
};

use std::sync::mpsc::{self, Receiver, Sender};

/// Additional bit authentications computed for malicious security checks.
const SEC_MARGIN_BIT_AUTH: usize = 2 * STATISTICAL_SECURITY * 8;
/// Additional cost of authenticating a number of bits into authenticated shares.
pub(crate) const SEC_MARGIN_SHARE_AUTH: usize = STATISTICAL_SECURITY * 8;

const EVALUATOR_ID: usize = 0;

/// Collects all party communication channels.
///
/// It includes
/// - `listen`: The party's own message receiver handle
/// - `evaluator`: The sender handle for the designated evaluator party
/// - `parties`: All other parties' sender handles, ordered by their `id`s
/// - `broadcast`: The sender handle of the broadcast utility
/// - `id`: The owning parties `id`
pub struct ChannelConfig {
    pub(crate) listen: Receiver<Message>,
    pub(crate) evaluator: Sender<Message>,
    pub(crate) parties: Vec<Sender<Message>>,
    pub(crate) broadcast: Sender<Message>,
    /// The channel config is for the party of this ID.
    pub id: usize,
}

/// A Wire label given by a party.
#[derive(Debug, Clone)]
pub struct WireLabel([u8; COMPUTATIONAL_SECURITY]);

struct GarbledAnd {
    sender: usize,
    gate_index: usize,
    g0: Vec<u8>,
    g1: Vec<u8>,
    g2: Vec<u8>,
    g3: Vec<u8>,
}

/// A struct defining protocol party state during a protocol execution.
pub struct Party {
    bit_counter: usize,
    /// The party's numeric identifier
    id: usize,
    /// The number of parties in the MPC session
    num_parties: usize,
    /// The channel configuration for communicating to other protocol parties
    channels: ChannelConfig,
    /// The global MAC key for authenticating wire value shares
    global_mac_key: MacKey,
    /// A local source of random bits and bytes
    entropy: Randomness,
    /// Pool of pre-computed authenticated bits
    abit_pool: Vec<AuthBit>,
    /// Pool of pre-computed authenticated shares
    ashare_pool: Vec<AuthBit>,
    /// Whether to log events
    enable_logging: bool,
    /// Incremental counter for ordering logs
    log_counter: u128,
    /// Wire labels for every wire in the circuit
    wire_shares: Vec<Option<(AuthBit, Option<WireLabel>)>>,
}

impl Party {
    /// Initialize an MPC party.
    ///
    /// This generates the party's global MAC key and sets the protocol phase to
    /// `PreInit`.
    pub fn new(
        channels: ChannelConfig,
        circuit: &Circuit,
        logging: bool,
        mut entropy: Randomness,
    ) -> Self {
        Self {
            bit_counter: 0,
            id: channels.id,
            num_parties: channels.parties.len(),
            channels,
            global_mac_key: generate_mac_key(&mut entropy),
            entropy,
            abit_pool: Vec::new(),
            ashare_pool: Vec::new(),
            log_counter: 0,
            enable_logging: logging,
            wire_shares: vec![None; circuit.num_gates()],
        }
    }

    /// Broadcast a `value` and receive other parties' broadcasted values in
    /// turn.
    ///
    /// Broadcast works using the broadcast relay utility:
    /// - In a first step, compute a cryptographic commitment on `value` and
    /// send that individually to all other parties.
    /// - Then send the commitment opening to the broadcast relay.
    /// - Finally, receive the other parties commitment openings from the
    ///   broadcast relay and use them to open their commitments to their
    ///   values.
    ///
    /// Since every party can only send one opening value to the broadcast
    /// relay, which is assumed to be trusted in distributing the received
    /// openings faithfully, it is ensured that every commitment is opened with
    /// the opening information. Therefore, because the commitments are binding,
    /// if a malicious party sends differing commitments to different parties at
    /// least one opening must fail.
    ///
    /// In a non-blackbox way we can also see that parties cannot chose their
    /// broadcast values dependent on other parties' values: Beside being
    /// hiding, the Random Oracle commitment we use also does not allow any
    /// homomorphic operations on commitment values, so even given many
    /// commitments from other parties a malicious party should not be able to
    /// chose their commitment in a way that the committed value is dependent on
    /// other parties' committed values.
    fn broadcast(&mut self, value: &[u8]) -> Result<Vec<(usize, Vec<u8>)>, Error> {
        // send/receive commitment to/from all parties
        let domain_separator = format!("Broadcast-{}", self.id);
        let (commitment, opening) =
            Commitment::new(value, domain_separator.as_bytes(), &mut self.entropy);

        let mut received_commitments = Vec::new();
        // Expect earlier parties' commitments.
        for _i in 0..self.id {
            let commitment_msg = self
                .channels
                .listen
                .recv()
                .expect("all parties should be online");
            if let MessagePayload::BroadcastCommitment(received_commitment) = commitment_msg.payload
            {
                debug_assert_eq!(commitment_msg.to, self.id);
                received_commitments.push((commitment_msg.from, received_commitment));
            } else {
                return Err(Error::UnexpectedMessage(commitment_msg));
            }
        }

        // All earlier commitments have been received, so it is the party's turn
        // to send messages to everyone, except itself.
        for i in 0..self.num_parties {
            if i == self.id {
                continue;
            }

            self.channels.parties[i]
                .send(Message {
                    from: self.id,
                    to: i,
                    payload: MessagePayload::BroadcastCommitment(commitment.clone()),
                })
                .expect("all parties should be online");
        }

        // Wait for the commitments sent by later parties.
        for _i in self.id + 1..self.num_parties {
            let commitment_msg = self
                .channels
                .listen
                .recv()
                .expect("all parties should be online");
            if let MessagePayload::BroadcastCommitment(received_commitment) = commitment_msg.payload
            {
                debug_assert_eq!(commitment_msg.to, self.id);
                received_commitments.push((commitment_msg.from, received_commitment));
            } else {
                return Err(Error::UnexpectedMessage(commitment_msg));
            }
        }

        self.sync().expect("synchronization should have succeeded");

        // Send the opening to the broadcast relay.
        self.channels
            .broadcast
            .send(Message {
                from: self.id,
                to: self.id,
                payload: MessagePayload::BroadcastOpening(opening),
            })
            .expect("all parties should be online");

        // Receive n-1 openings from the broadcast relay.
        let mut received_values = Vec::new();
        for _i in 0..self.num_parties - 1 {
            let opening_msg = self
                .channels
                .listen
                .recv()
                .expect("all parties should be online");
            if let MessagePayload::BroadcastOpening(ref received_opening) = opening_msg.payload {
                let received_commitment = &received_commitments
                    .iter()
                    .find(|(received_from, _)| *received_from == opening_msg.from)
                    .expect("should get opening from all parties")
                    .1;
                let received_value = received_commitment.open(received_opening)?;
                received_values.push((opening_msg.from, received_value));
            } else {
                return Err(Error::UnexpectedMessage(opening_msg));
            }
        }

        self.sync().expect("synchronization should have succeeded");
        Ok(received_values)
    }

    /// Broadcast three commitments for the share authentication malicious security check.
    fn broadcast_commitments(
        &mut self,
        commitment_0: Commitment,
        commitment_1: Commitment,
        commitment_macs: Commitment,
    ) -> Result<Vec<(usize, Commitment, Commitment, Commitment)>, Error> {
        let mut commitment_bytes = Vec::new();
        commitment_bytes.extend_from_slice(&commitment_0.as_bytes());
        commitment_bytes.extend_from_slice(&commitment_1.as_bytes());
        commitment_bytes.extend_from_slice(&commitment_macs.as_bytes());

        let other_commitment_bytes = self.broadcast(&commitment_bytes)?;
        let mut results = Vec::new();
        for j in 0..self.num_parties {
            if j == self.id {
                continue;
            }
            let (_party, their_commitment_bytes) = other_commitment_bytes
                .iter()
                .find(|(party, _)| *party == j)
                .expect("should have received commitments from every other party");
            let (their_commitment_0, rest) = Commitment::from_bytes(their_commitment_bytes)?;
            let (their_commitment_1, rest) = Commitment::from_bytes(&rest)?;
            let (their_commitment_macs, rest) = Commitment::from_bytes(&rest)?;
            debug_assert!(rest.is_empty());
            results.push((
                j,
                their_commitment_0,
                their_commitment_1,
                their_commitment_macs,
            ))
        }

        Ok(results)
    }

    /// Broadcast opening values for the share authentication malicious security check.
    fn broadcast_opening(&mut self, opening: Opening) -> Result<Vec<(usize, Opening)>, Error> {
        let other_opening_bytes = self.broadcast(&opening.as_bytes())?;
        let mut results = Vec::new();
        for j in 0..self.num_parties {
            if j == self.id {
                continue;
            }
            let (_party, their_opening_bytes) = other_opening_bytes
                .iter()
                .find(|(party, _)| *party == j)
                .expect("should have received openings from all other parties");
            results.push((j, Opening::from_bytes(their_opening_bytes)?));
        }
        Ok(results)
    }

    /// Return `true`, if the party is the designated circuit evaluator.
    fn is_evaluator(&self) -> bool {
        self.id == EVALUATOR_ID
    }

    /// Jointly compute `len` bit authentications.
    ///
    /// Internally generates `len +  SEC_MARGIN_BIT_AUTH` bit
    /// authentications for each other party, of which all but `len` are
    /// discarded after performing statistical checks for malicious security.
    /// After this point the guarantee is that a pair-wise consistent
    /// `global_mac_key` was used in all bit-authentications between two
    /// parties.
    fn precompute_abits(&mut self, len: usize) -> Result<Vec<AuthBit>, Error> {
        let len_unchecked = len + SEC_MARGIN_BIT_AUTH;

        // 1. Generate `len_unchecked` random local bits for authenticating.
        let random_bytes = self
            .entropy
            .bytes(len_unchecked / 8 + 1)
            .expect("sufficient randomness should have been provided externally")
            .to_owned();
        let mut bits = Vec::new();

        for i in 0..len_unchecked {
            bits.push(Bit {
                id: self.fresh_bit_id(),
                value: ith_bit(i, &random_bytes),
            })
        }

        // 2. Obliviously get MACs on all local bits from every other party and obliviously provide MACs on
        //    their local bits.
        let mut authenticated_bits = Vec::new();
        for (_bit_index, bit) in bits.into_iter().enumerate() {
            let mut computed_keys: Vec<BitKey> = Vec::new();
            let mut received_macs = Vec::new();

            // Obliviously authenticate local bits of earlier parties.
            for bit_holder in 0..self.id {
                let computed_key = self.provide_bit_authentication(bit_holder)?;
                computed_keys.push(computed_key)
            }

            // Obliviously obtain MACs on the current bit from all other parties.
            for authenticator in 0..self.num_parties {
                if authenticator == self.id {
                    continue;
                }

                let received_mac: Mac = self.obtain_bit_authentication(authenticator, &bit)?;
                received_macs.push((authenticator, received_mac));
            }

            // Obliviously authenticate local bits of later parties.
            for bit_holder in self.id + 1..self.num_parties {
                let computed_key = self.provide_bit_authentication(bit_holder)?;
                computed_keys.push(computed_key)
            }

            self.sync().expect("synchronization should have succeeded");

            authenticated_bits.push(AuthBit {
                bit,
                macs: received_macs,
                mac_keys: computed_keys,
            })
        }

        self.sync().expect("synchronization should have succeeded");

        // 3. Perform the statistical check for malicious security of the
        //    generated authenticated bits. Failure indicates buggy bit
        //    authentication or cheating.
        self.bit_auth_check(&authenticated_bits)
            .expect("bit authentication check must not fail");

        // 4. Return the first `len` authenticated bits.
        Ok(authenticated_bits[0..len].to_vec())
    }

    /// Transform authenticated bits into `len` authenticated bit shares.
    fn random_authenticated_shares(&mut self, len: usize) -> Result<Vec<AuthBit>, Error> {
        let len_unchecked = len + SEC_MARGIN_SHARE_AUTH;
        let authenticated_bits: Vec<AuthBit> = self.abit_pool.drain(..len_unchecked).collect();

        // Malicious security checks
        for r in len..len + SEC_MARGIN_SHARE_AUTH {
            let domain_separator_0 = format!("Share authentication {} - 0", self.id);
            let domain_separator_1 = format!("Share authentication {} - 1", self.id);
            let domain_separator_macs = format!("Share authentication {} - macs", self.id);

            let mut mac_0 = [0u8; MAC_LENGTH]; // XOR of all auth keys
            for key in authenticated_bits[r].mac_keys.iter() {
                for byte in 0..mac_0.len() {
                    mac_0[byte] ^= key.mac_key[byte];
                }
            }

            let mut mac_1 = [0u8; MAC_LENGTH]; // XOR of all (auth keys xor Delta)
            for key in authenticated_bits[r].mac_keys.iter() {
                for byte in 0..mac_1.len() {
                    mac_1[byte] ^= key.mac_key[byte] ^ self.global_mac_key[byte];
                }
            }

            let all_macs: Vec<u8> = authenticated_bits[r].serialize_bit_macs(); // the authenticated bit and all macs on it

            let (com0, op0) =
                Commitment::new(&mac_0, domain_separator_0.as_bytes(), &mut self.entropy);
            let (com1, op1) =
                Commitment::new(&mac_1, domain_separator_1.as_bytes(), &mut self.entropy);
            let (com_macs, op_macs) = Commitment::new(
                &all_macs,
                domain_separator_macs.as_bytes(),
                &mut self.entropy,
            );

            let received_commitments = self.broadcast_commitments(com0, com1, com_macs)?;

            let received_mac_openings = self.broadcast_opening(op_macs)?;

            // open the other parties commitments to obtain their bit values and MACs
            let mut other_bits_macs = Vec::new();
            for (party, their_opening) in received_mac_openings {
                let (_, _, _, their_mac_commitment) = received_commitments
                    .iter()
                    .find(|(committing_party, _, _, _)| *committing_party == party)
                    .expect("should have received commitments from all parties");
                other_bits_macs.push((
                    party,
                    AuthBit::deserialize_bit_macs(&their_mac_commitment.open(&their_opening)?)?,
                ));
            }

            debug_assert_eq!(
                other_bits_macs.len(),
                self.num_parties - 1,
                "should have received valid openings from all other parties"
            );

            // compute xor of all opened MACs for each party
            let mut xor_macs = vec![[0u8; MAC_LENGTH]; self.num_parties];

            for (maccing_party, xored_mac) in xor_macs.iter_mut().enumerate() {
                if maccing_party == self.id {
                    // don't need to compute this for ourselves
                    continue;
                }

                for p in 0..self.num_parties {
                    let their_mac = if p == self.id {
                        authenticated_bits[r]
                            .macs
                            .iter()
                            .find(|(party, _mac)| *party == maccing_party)
                            .expect("should have MACs from all other parties")
                            .1
                    } else {
                        let (_sending_party, (_other_bit, other_macs)) = other_bits_macs
                            .iter()
                            .find(|(sending_party, _rest)| *sending_party == p)
                            .expect(
                                "should have gotten bit values and MACs from all other parties",
                            );
                        other_macs[maccing_party]
                    };
                    for byte in 0..MAC_LENGTH {
                        xored_mac[byte] ^= their_mac[byte];
                    }
                }
            }

            let mut b_i = false;
            // compute our own xor of all bits
            for (_party, (bit, _macs)) in other_bits_macs.iter() {
                b_i ^= *bit;
            }

            // compute the other parties xor-ed bits to know which openings they are sending
            let mut xor_bits = vec![authenticated_bits[r].bit.value; self.num_parties];
            for j in 0..self.num_parties {
                if j == self.id {
                    xor_bits[j] = b_i;
                }
                for (party, (bit, _macs)) in other_bits_macs.iter() {
                    if *party == j {
                        continue;
                    }
                    xor_bits[j] ^= bit;
                }
            }

            let received_bit_openings = if b_i {
                self.broadcast_opening(op1)?
            } else {
                self.broadcast_opening(op0)?
            };

            for (party, bit_opening) in received_bit_openings {
                let (_, their_com0, their_com1, _) = received_commitments
                    .iter()
                    .find(|(committing_party, _, _, _)| *committing_party == party)
                    .expect("should have received commitments from all other parties");
                let their_mac = if !xor_bits[party] {
                    their_com0.open(&bit_opening).unwrap()
                } else {
                    their_com1.open(&bit_opening).unwrap()
                };

                if their_mac != xor_macs[party] {
                    self.log(&format!(
                        "Error while checking party {}'s bit commitment!",
                        party
                    ));
                    return Err(Error::CheckFailed(
                        "Share Authentication failed".to_string(),
                    ));
                }
            }
        }

        Ok(authenticated_bits[0..len].to_vec())
    }

    /// Compute unauthenticated cross terms in an AND triple output share.
    fn half_and(&mut self, x: &AuthBit, y: &AuthBit) -> Result<bool, Error> {
        /// Obtain the least significant bit of some hash output
        fn lsb(input: &[u8]) -> bool {
            (input[input.len() - 1] & 1) != 0
        }

        let domain_separator = b"half-and-hash";

        let mut t_js = vec![false; self.num_parties];
        let mut s_js = vec![false; self.num_parties];

        // receive earlier hashes
        for _j in 0..self.id {
            let hashes_message = self.channels.listen.recv().unwrap();
            if let Message {
                from,
                to,
                payload: MessagePayload::HalfAndHashes(hash_j_0, hash_j_1),
            } = hashes_message
            {
                debug_assert_eq!(to, self.id);
                let their_mac = x
                    .macs
                    .iter()
                    .find(|(party, _mac)| *party == from)
                    .expect("should have MACs from all other parties")
                    .1;
                let hash_lsb = lsb(&hash_to_mac_width(domain_separator, &their_mac));
                let t_j = if x.bit.value {
                    hash_j_1 ^ hash_lsb
                } else {
                    hash_j_0 ^ hash_lsb
                };
                t_js[from] = t_j;
            } else {
                return Err(Error::UnexpectedMessage(hashes_message));
            }
        }

        for j in 0..self.num_parties {
            if j == self.id {
                continue;
            }
            let s_j = self
                .entropy
                .bit()
                .expect("sufficient randomness should have been provided externally");
            s_js[j] = s_j;

            // K_i[x^j]
            let input_0 = x
                .mac_keys
                .iter()
                .find(|key| key.bit_holder == j)
                .expect("should have keys for all other parties")
                .mac_key;

            // K_i[x^j] xor Delta_i
            let mut input_1 = [0u8; MAC_LENGTH];
            for byte in 0..MAC_LENGTH {
                input_1[byte] = input_0[byte] ^ self.global_mac_key[byte];
            }

            let h_0 = lsb(&hash_to_mac_width(domain_separator, &input_0)) ^ s_j;
            let h_1 = lsb(&hash_to_mac_width(domain_separator, &input_1)) ^ s_j ^ y.bit.value;
            self.channels.parties[j]
                .send(Message {
                    from: self.id,
                    to: j,
                    payload: MessagePayload::HalfAndHashes(h_0, h_1),
                })
                .unwrap();
        }

        // receive later hashes
        for _j in self.id + 1..self.num_parties {
            let hashes_message = self.channels.listen.recv().unwrap();
            if let Message {
                from,
                to,
                payload: MessagePayload::HalfAndHashes(hash_j_0, hash_j_1),
            } = hashes_message
            {
                debug_assert_eq!(to, self.id);
                let their_mac = x
                    .macs
                    .iter()
                    .find(|(party, _mac)| *party == from)
                    .expect("should have MACs from all other parties")
                    .1;
                let hash_lsb = lsb(&hash_to_mac_width(domain_separator, &their_mac));
                let t_j = if x.bit.value {
                    hash_j_1 ^ hash_lsb
                } else {
                    hash_j_0 ^ hash_lsb
                };
                t_js[from] = t_j;
            } else {
                return Err(Error::UnexpectedMessage(hashes_message));
            }
        }

        self.sync().expect("sync should always succeed");

        let mut v_i = false;
        for j in 0..self.num_parties {
            if j == self.id {
                continue;
            }
            v_i ^= t_js[j] ^ s_js[j];
        }

        Ok(v_i)
    }

    /// Compute authenticated AND triples.
    fn random_leaky_and(&mut self, len: usize) -> Result<Vec<(AuthBit, AuthBit, AuthBit)>, Error> {
        let mut results = Vec::new();
        let mut shares: Vec<AuthBit> = self.ashare_pool.drain(..3 * len).collect();
        for _i in 0..len {
            let x = shares.pop().expect("requested enough authenticated bits");
            let y = shares.pop().expect("requested enough authenticated bits");
            let mut r = shares.pop().expect("requested enough authenticated bits");

            let v_i = self.half_and(&x, &y)?;

            let z_i_value = (y.bit.value && x.bit.value) ^ v_i;
            let e_i_value = z_i_value ^ r.bit.value;

            let other_e_is = self.broadcast(&[e_i_value as u8])?;
            for key in r.mac_keys.iter_mut() {
                let (_, other_e_j) = other_e_is
                    .iter()
                    .find(|(party, _)| *party == key.bit_holder)
                    .expect("should have received e_j from every other party j");
                let correction_necessary = other_e_j[0] != 0;
                if correction_necessary {
                    key.mac_key = xor_mac_width(&key.mac_key, &self.global_mac_key);
                }
            }
            r.bit.value = z_i_value;
            let z = r;

            self.sync().expect("sync should always succeed");

            // Triple Check
            // 4. compute Phi
            let mut phi = [0u8; MAC_LENGTH];
            for key in y.mac_keys.iter() {
                let (_, their_mac) = y
                    .macs
                    .iter()
                    .find(|(maccing_party, _)| *maccing_party == key.bit_holder)
                    .unwrap();
                let intermediate_xor = xor_mac_width(&key.mac_key, their_mac);
                phi = xor_mac_width(&phi, &intermediate_xor);
            }

            if y.bit.value {
                phi = xor_mac_width(&phi, &self.global_mac_key);
            }

            // 5. receive earlier Us
            let mut mac_phis = Vec::new();
            let mut key_phis = Vec::new();
            let domain_separator_triple = b"triple-check";
            for _j in 0..self.id {
                let u_message = self.channels.listen.recv().unwrap();
                if let Message {
                    from,
                    to,
                    payload: MessagePayload::LeakyAndU(u),
                } = u_message
                {
                    debug_assert_eq!(self.id, to);
                    // compute M_phi
                    let (_, their_mac) = x
                        .macs
                        .iter()
                        .find(|(maccing_party, _)| *maccing_party == from)
                        .expect("should have MACs from all other parties");
                    let mut mac_phi = hash_to_mac_width(domain_separator_triple, their_mac);
                    if x.bit.value {
                        for byte in 0..MAC_LENGTH {
                            mac_phi[byte] ^= u[byte];
                        }
                    }
                    mac_phis.push((from, mac_phi));
                } else {
                    return Err(Error::UnexpectedMessage(u_message));
                }
            }

            // 5. send out own Us
            for j in 0..self.num_parties {
                if j == self.id {
                    continue;
                }
                // compute k_phi
                let my_key = x
                    .mac_keys
                    .iter()
                    .find(|k| k.bit_holder == j)
                    .expect("should have keys for all other parties' bits");

                let k_phi = hash_to_mac_width(domain_separator_triple, &my_key.mac_key);
                key_phis.push((j, k_phi));

                // compute U_j
                let u_j_hash = hash_to_mac_width(
                    domain_separator_triple,
                    &xor_mac_width(&my_key.mac_key, &self.global_mac_key),
                );
                let u_j = xor_mac_width(&u_j_hash, &k_phi);
                let u_j = xor_mac_width(&u_j, &phi);

                self.channels.parties[j]
                    .send(Message {
                        from: self.id,
                        to: j,
                        payload: MessagePayload::LeakyAndU(u_j),
                    })
                    .unwrap();
            }

            // 5. Receive later Us
            for _j in self.id + 1..self.num_parties {
                let u_message = self.channels.listen.recv().unwrap();
                if let Message {
                    from,
                    to,
                    payload: MessagePayload::LeakyAndU(u),
                } = u_message
                {
                    debug_assert_eq!(self.id, to);
                    // compute M_phi
                    let (_, their_mac) = x
                        .macs
                        .iter()
                        .find(|(maccing_party, _)| *maccing_party == from)
                        .expect("should have MACs from all other parties");
                    let mut mac_phi = hash_to_mac_width(domain_separator_triple, their_mac);
                    if x.bit.value {
                        for byte in 0..MAC_LENGTH {
                            mac_phi[byte] ^= u[byte];
                        }
                    }
                    mac_phis.push((from, mac_phi));
                } else {
                    return Err(Error::UnexpectedMessage(u_message));
                }
            }

            self.sync().expect("sync should always succeed");

            // 6. Compute H_i
            let mut h = [0u8; MAC_LENGTH];

            for (j, key_phi) in key_phis {
                let (_, mac_phi) = mac_phis
                    .iter()
                    .find(|(maccing_party, _)| *maccing_party == j)
                    .expect("should have a MAC from every other party");
                let intermediate_xor = xor_mac_width(&key_phi, mac_phi);
                h = xor_mac_width(&h, &intermediate_xor);
            }

            for key in z.mac_keys.iter() {
                let (_, their_mac) = z
                    .macs
                    .iter()
                    .find(|(maccing_party, _)| key.bit_holder == *maccing_party)
                    .expect("should have MACs from all other parties");
                let intermediate_xor = xor_mac_width(&key.mac_key, their_mac);
                h = xor_mac_width(&h, &intermediate_xor);
            }

            if x.bit.value {
                h = xor_mac_width(&h, &phi);
            }
            if z.bit.value {
                h = xor_mac_width(&h, &self.global_mac_key);
            }

            // 6. Broadcast H_is
            let other_hs = self.broadcast(&h)?;

            // 7. Check H_is xor to 0
            let mut test = h;
            for (_, other_h) in other_hs {
                test = xor_mac_width(
                    &test,
                    &other_h
                        .try_into()
                        .expect("should have received the right number of bytes"),
                );
            }

            if test != [0u8; MAC_LENGTH] {
                return Err(Error::CheckFailed("Leaky AND xor check failed".to_string()));
            }

            results.push((x, y, z));
        }

        Ok(results)
    }

    /// Verifiably open an authenticated bit, revealing its value to all parties.
    fn open_bit(&mut self, bit: &AuthBit) -> Result<bool, Error> {
        let mut other_bits = Vec::new();

        // receive earlier parties MACs and verify them
        for _j in 0..self.id {
            let reveal_message = self.channels.listen.recv().unwrap();
            if let Message {
                from,
                to,
                payload: MessagePayload::BitReveal(value, mac),
            } = reveal_message
            {
                debug_assert_eq!(self.id, to);
                let my_key = bit
                    .mac_keys
                    .iter()
                    .find(|k| k.bit_holder == from)
                    .expect("should have a key for every other party");
                if !verify_mac(&value, &mac, &my_key.mac_key, &self.global_mac_key) {
                    return Err(Error::CheckFailed("Bit reveal failed".to_string()));
                }
                other_bits.push((from, value));
            } else {
                return Err(Error::UnexpectedMessage(reveal_message));
            }
        }

        // send out own MACs
        for j in 0..self.num_parties {
            if j == self.id {
                continue;
            }
            let (_, their_mac) = bit
                .macs
                .iter()
                .find(|(maccing_party, _mac)| j == *maccing_party)
                .expect("should have MACs from all other parties");
            self.channels.parties[j]
                .send(Message {
                    from: self.id,
                    to: j,
                    payload: MessagePayload::BitReveal(bit.bit.value, *their_mac),
                })
                .unwrap();
        }

        // receive later parties MACs and verify them
        for _j in self.id + 1..self.num_parties {
            let reveal_message = self.channels.listen.recv().unwrap();
            if let Message {
                from,
                to,
                payload: MessagePayload::BitReveal(value, mac),
            } = reveal_message
            {
                debug_assert_eq!(self.id, to);
                let my_key = bit
                    .mac_keys
                    .iter()
                    .find(|k| k.bit_holder == from)
                    .expect("should have a key for every other party");
                if !verify_mac(&value, &mac, &my_key.mac_key, &self.global_mac_key) {
                    return Err(Error::CheckFailed("Bit reveal failed".to_string()));
                }
                other_bits.push((from, value));
            } else {
                return Err(Error::UnexpectedMessage(reveal_message));
            }
        }

        let mut result = bit.bit.value;
        for (_, other_bit) in other_bits {
            result ^= other_bit
        }

        self.sync().expect("sync should always succeed");

        Ok(result)
    }

    /// Locally compute the XOR of two authenticated bits, which will itself be
    /// authenticated already.
    fn xor_abits(&mut self, a: &AuthBit, b: &AuthBit) -> AuthBit {
        let mut macs = Vec::new();
        for (maccing_party, mac) in a.macs.iter() {
            let mut xored_mac = [0u8; MAC_LENGTH];
            let other_mac = b
                .macs
                .iter()
                .find(|(party, _)| *party == *maccing_party)
                .expect("should have MACs from all other parties")
                .1;
            for byte in 0..MAC_LENGTH {
                xored_mac[byte] = mac[byte] ^ other_mac[byte];
            }
            macs.push((*maccing_party, xored_mac))
        }

        let mut mac_keys = Vec::new();
        for key in a.mac_keys.iter() {
            let mut xored_key = [0u8; MAC_LENGTH];
            let other_key = b
                .mac_keys
                .iter()
                .find(|other_key| key.bit_holder == other_key.bit_holder)
                .expect("should have two MAC keys for every other party")
                .mac_key;
            for byte in 0..MAC_LENGTH {
                xored_key[byte] = key.mac_key[byte] ^ other_key[byte];
            }
            mac_keys.push(BitKey {
                holder_bit_id: BitID(0), // XXX: We can't know their bit ID here, is it necessary for anything though?
                bit_holder: key.bit_holder,
                mac_key: xored_key,
            })
        }

        AuthBit {
            bit: Bit {
                id: self.fresh_bit_id(),
                value: a.bit.value ^ b.bit.value,
            },
            macs,
            mac_keys,
        }
    }

    fn and_abits(
        &mut self,
        random_triple: (AuthBit, AuthBit, AuthBit),
        x: &AuthBit,
        y: &AuthBit,
    ) -> Result<AuthBit, Error> {
        let (a, b, c) = random_triple;
        let blinded_x_share = self.xor_abits(x, &a);
        let blinded_y_share = self.xor_abits(y, &b);

        let blinded_x = self.open_bit(&blinded_x_share)?;
        let blinded_y = self.open_bit(&blinded_y_share)?;

        let mut result = c;
        if blinded_x {
            result = self.xor_abits(&result, &y);
        }
        if !blinded_y {
            result = self.xor_abits(&result, &a);
        }

        Ok(result)
    }

    /// Invert an authenticated bit, resulting in an authentication of the
    /// inverted bit.
    fn invert_abit(&mut self, a: &AuthBit) -> AuthBit {
        let mut mac_keys = a.mac_keys.clone();
        for key in mac_keys.iter_mut() {
            key.mac_key = xor_mac_width(&key.mac_key, &self.global_mac_key)
        }

        AuthBit {
            bit: Bit {
                id: self.fresh_bit_id(),
                value: a.bit.value ^ true,
            },
            macs: a.macs.clone(),
            mac_keys,
        }
    }

    /// Build oblivious AND triples by combining leaky AND triples.
    fn random_and_shares(
        &mut self,
        len: usize,
        bucket_size: usize,
    ) -> Result<Vec<(AuthBit, AuthBit, AuthBit)>, Error> {
        // get `len * BUCKET_SIZE` leaky ANDs
        let leaky_ands = self.random_leaky_and(len * bucket_size)?;

        // Shuffle the list.
        // Using random u128 bit indices for shuffling should prevent collisions
        // for at least 2^40 triples except with probability 2^-40.
        let random_indices = self.coin_flip(leaky_ands.len() * 8 * 16)?;
        let mut indexed_ands: Vec<(u128, (AuthBit, AuthBit, AuthBit))> = random_indices
            .chunks_exact(16)
            .map(|chunk| {
                u128::from_be_bytes(chunk.try_into().expect("chunks are exactly the right size"))
            })
            .zip(leaky_ands)
            .collect();
        indexed_ands.sort_by_key(|(index, _)| *index);
        let leaky_ands: Vec<&(AuthBit, AuthBit, AuthBit)> =
            indexed_ands.iter().map(|(_, triple)| triple).collect();

        // combine all buckets to single ANDs
        let mut results = Vec::new();
        for bucket in leaky_ands.chunks_exact(bucket_size) {
            let (mut x, y, mut z) = bucket[0].clone();

            for (next_x, next_y, next_z) in bucket[1..].iter() {
                let d_i = self.xor_abits(&y, next_y);
                let d = self.open_bit(&d_i)?;

                x = self.xor_abits(&x, next_x);
                z = self.xor_abits(&z, next_z);
                if d {
                    z = self.xor_abits(&z, next_x);
                }
            }
            results.push((x, y, z));
        }

        Ok(results)
    }

    /// Perform the active_security check for bit authentication
    fn bit_auth_check(&mut self, auth_bits: &[AuthBit]) -> Result<(), Error> {
        for _j in 0..SEC_MARGIN_BIT_AUTH {
            // a) Sample `ell'` random bit.s
            let r = self.coin_flip(auth_bits.len())?;

            // b) Compute x_j = XOR_{m in [ell']} r_m & x_m
            let mut x_j = false;
            for (m, xm) in auth_bits.iter().enumerate() {
                x_j ^= ith_bit(m, &r) & xm.bit.value;
            }

            // broadcast x_j
            let other_x_j_bytes = self.broadcast(&[x_j as u8])?;

            let mut other_x_js = Vec::new();
            for (party, other_x_j) in other_x_j_bytes {
                debug_assert!(other_x_j.len() == 1);
                other_x_js.push((party, other_x_j[0] != 0))
            }

            self.sync().expect("synchronization should have succeeded");

            // c) Compute xored keys for other parties
            let mut xored_keys = vec![[0u8; MAC_LENGTH]; self.num_parties];
            let mut xored_tags = vec![[0u8; MAC_LENGTH]; self.num_parties];
            for (m, xm) in auth_bits.iter().enumerate() {
                if ith_bit(m, &r) {
                    for mac_keys in xm.mac_keys.iter() {
                        for byte in 0..mac_keys.mac_key.len() {
                            xored_keys[mac_keys.bit_holder][byte] ^= mac_keys.mac_key[byte];
                        }
                    }
                    for (key_holder, tag) in xm.macs.iter() {
                        for (index, tag_byte) in tag.iter().enumerate() {
                            xored_tags[*key_holder][index] ^= *tag_byte;
                        }
                    }
                }
            }

            // d) Receive / Send xored MACs
            let mut received_macs = Vec::new();
            for _i in 0..self.id {
                let mac_message = self
                    .channels
                    .listen
                    .recv()
                    .expect("all parties should be online");
                if let MessagePayload::Mac(mac) = mac_message.payload {
                    debug_assert_eq!(mac_message.to, self.id, "Wrong recipient for MAC message");
                    received_macs.push((mac_message.from, mac));
                } else {
                    return Err(Error::UnexpectedMessage(mac_message));
                }
            }

            for i in 0..self.num_parties {
                if i == self.id {
                    continue;
                }

                let tag = xored_tags[i];

                let mac_message = Message {
                    from: self.id,
                    to: i,
                    payload: MessagePayload::Mac(tag),
                };
                self.channels.parties[i]
                    .send(mac_message)
                    .expect("all parties should be online");
            }

            for _i in self.id + 1..self.num_parties {
                let mac_message = self
                    .channels
                    .listen
                    .recv()
                    .expect("all parties should be online");
                if let MessagePayload::Mac(mac) = mac_message.payload {
                    debug_assert_eq!(mac_message.to, self.id, "Wrong recipient for MAC message");
                    received_macs.push((mac_message.from, mac));
                } else {
                    return Err(Error::UnexpectedMessage(mac_message));
                }
            }

            self.sync().expect("synchronization should have succeeded");

            // verify MACs
            for (party, mac) in received_macs {
                let other_xj = other_x_js
                    .iter()
                    .find(|(xj_party, _)| *xj_party == party)
                    .expect("should have an xj from every other party")
                    .1;
                let key = xored_keys[party];

                if !verify_mac(&other_xj, &mac, &key, &self.global_mac_key) {
                    panic!("Party {}: {}'s MAC verification failed: {other_xj}\nMAC: {mac:?}\nLocal key: {key:?}\nGlobal key: {:?}\n", self.id, party, self.global_mac_key);
                }
            }
        }
        Ok(())
    }

    /// Jointly sample a random byte string of length `len / 8 + 1`, i.e. enough
    /// to contain `len` random bits.
    fn coin_flip(&mut self, len: usize) -> Result<Vec<u8>, Error> {
        let my_contribution = self
            .entropy
            .bytes(len / 8 + 1)
            .expect("sufficient randomness should have been provided externally")
            .to_owned();
        let other_contributions = self.broadcast(&my_contribution)?;

        let mut result = my_contribution;
        for (_party, their_contribution) in other_contributions {
            debug_assert_eq!(
                their_contribution.len(),
                result.len(),
                "all randomness contributions must be of the same length"
            );
            for i in 0..result.len() {
                result[i] ^= their_contribution[i]
            }
        }

        Ok(result)
    }

    /// Initiate an OT session as the Sender.
    ///
    /// The sender needs to provide two inputs to the OT protocol and receives
    /// no output.
    fn ot_send(
        &mut self,
        receiver_address: Sender<SubMessage>,
        my_inbox: Receiver<SubMessage>,
        receiver_id: usize,
        left_input: &[u8],
        right_input: &[u8],
    ) -> Result<(), Error> {
        let domain_separator = format!("OT-{}-{}", self.id, receiver_id);
        let (sender_state, sender_commitment) =
            crate::primitives::ot::OTSender::init(&mut self.entropy, domain_separator.as_bytes())?;
        receiver_address
            .send(SubMessage::OTCommit(sender_commitment))
            .expect("all parties should be online");

        let selection_msg = my_inbox.recv().expect("all parties should be online");
        if let SubMessage::OTSelect(selection) = selection_msg {
            let payload =
                sender_state.send(left_input, right_input, &selection, &mut self.entropy)?;

            receiver_address
                .send(SubMessage::OTSend(payload))
                .expect("all parties should be online");
            Ok(())
        } else {
            Err(Error::UnexpectedSubprotocolMessage(selection_msg))
        }
    }

    /// Listen for an OT initiation as the receiver.
    ///
    /// The receiver needs to provide a choice of left or right sender input to
    /// the protocol and receives the chosen sender input.
    fn ot_receive(
        &mut self,
        choose_left_input: bool,
        sender_address: Sender<SubMessage>,
        my_inbox: Receiver<SubMessage>,
        sender_id: usize,
    ) -> Result<Vec<u8>, Error> {
        let ot_commit_msg = my_inbox.recv().expect("all parties should be online");
        if let SubMessage::OTCommit(commitment) = ot_commit_msg {
            let domain_separator = format!("OT-{}-{}", sender_id, self.id);
            let (receiver_state, receiver_selection) = crate::primitives::ot::OTReceiver::select(
                &mut self.entropy,
                domain_separator.as_bytes(),
                commitment,
                choose_left_input,
            )?;
            sender_address
                .send(SubMessage::OTSelect(receiver_selection))
                .expect("all parties should be online");
            let payload_msg = my_inbox.recv().expect("all parties should be online");
            if let SubMessage::OTSend(payload) = payload_msg {
                let result = receiver_state.receive(payload)?;
                Ok(result)
            } else {
                Err(Error::UnexpectedSubprotocolMessage(payload_msg))
            }
        } else {
            Err(Error::UnexpectedSubprotocolMessage(ot_commit_msg))
        }
    }

    /// Generate a fresh bit id, increasing the internal bit counter.
    fn fresh_bit_id(&mut self) -> BitID {
        let res = self.bit_counter;
        self.bit_counter += 1;
        BitID(res)
    }

    /// Initiate a two-party bit authentication session to oblivious obtain a
    /// MAC from the authenticator on a locally held bit.
    ///
    /// The authenticator computes `left_value = K + Delta` and `right_value =
    /// K` where `K` is a fresh mac key and `Delta` is the authenticator's
    /// global MAC key. If `b` is the bit holders local bit, the bit holder can
    /// thus obliviously obtain a MAC `M = K + b * Delta` by setting `b` as
    /// their choice bit as an OT receiver with the authenticator acting as OT
    /// sender with inputs `left_value` and `right value`.
    fn obtain_bit_authentication(
        &mut self,
        authenticator: usize,
        local_bit: &Bit,
    ) -> Result<Mac, Error> {
        // Set up channels for an OT subprotocol session with the authenticator.
        let (my_address, my_inbox) = mpsc::channel::<SubMessage>();
        let (their_address, their_inbox) = mpsc::channel::<SubMessage>();

        // The authenticator has to initiate an OT session, so request a bit
        // authentication session using the generated channels.
        self.channels.parties[authenticator]
            .send(Message {
                from: self.id,
                to: authenticator,
                payload: MessagePayload::RequestBitAuth(
                    local_bit.id.clone(),
                    my_address,
                    their_inbox,
                ),
            })
            .expect("all parties should be online");

        // Join the authenticator's OT session with the local bit value as the
        // receiver choice input.
        let received_mac: Mac = self
            .ot_receive(local_bit.value, their_address, my_inbox, authenticator)?
            .try_into()
            .expect("should receive a MAC of the right length");

        Ok(received_mac)
    }

    /// Listen for a two-party bit authentication request to oblivious
    /// authenticate a bit holders local bit and obtain the corresponding MAC
    /// key.
    ///
    /// The authenticator computes `left_value = K + Delta` and `right_value =
    /// K` where `K` is a fresh mac key and `Delta` is the authenticator's
    /// global MAC key. If `b` is the bit holders local bit, the bit holder can
    /// thus obliviously obtain a MAC `M = K + b * Delta` by setting `b` as
    /// their choice bit as an OT receiver with the authenticator acting as OT
    /// sender with inputs `left_value` and `right value`.
    fn provide_bit_authentication(&mut self, bit_holder: usize) -> Result<BitKey, Error> {
        let request_msg = self
            .channels
            .listen
            .recv()
            .expect("all parties should be online");

        if let Message {
            to,
            from,
            payload: MessagePayload::RequestBitAuth(holder_bit_id, their_address, my_inbox),
        } = request_msg
        {
            debug_assert_eq!(to, self.id, "Got a wrongly addressed message");

            // Compute the MACs for both possible values of the bit holder's
            // bit. Note that `mac_on_false` is simply the fresh local mac_key.
            let (mac_on_true, mac_on_false) = mac(&true, &self.global_mac_key, &mut self.entropy);

            // Initiate an OT session with the bit holder giving the two MACs as
            // sender inputs.
            self.ot_send(their_address, my_inbox, from, &mac_on_true, &mac_on_false)?;

            Ok(BitKey {
                holder_bit_id,
                bit_holder,
                mac_key: mac_on_false,
            })
        } else {
            self.log(&format!("Bit Auth: Unexpected message {request_msg:?}"));
            Err(Error::UnexpectedMessage(request_msg))
        }
    }

    /// Run the function independent pre-processing phase of the protocol.
    ///
    /// This generates labeled wire shares for all input wires and AND-gate output wires.
    fn function_independent(&mut self, circuit: &Circuit) -> Result<(), Error> {
        self.ashare_pool = self.random_authenticated_shares(circuit.share_authentication_cost())?;

        for (gate_index, gate) in circuit.gates.iter().enumerate() {
            match *gate {
                crate::circuit::WiredGate::Input(_) | crate::circuit::WiredGate::And(_, _) => {
                    let share = self
                        .ashare_pool
                        .pop()
                        .expect("should have pre-computed enough authenticated random shares");
                    let label = self
                        .entropy
                        .bytes(COMPUTATIONAL_SECURITY)
                        .expect("should have provided enough randoness externally")
                        .try_into()
                        .expect("should have received the right number of bytes");
                    self.wire_shares[gate_index] = Some((share, Some(WireLabel(label))));
                }
                _ => continue,
            }
        }

        Ok(())
    }

    /// Run the function-dependent pre-processing phase of the protocol.
    fn function_dependent(
        &mut self,
        circuit: &Circuit,
    ) -> Result<(Vec<GarbledAnd>, Vec<(usize, u8, AuthBit)>), Error> {
        let num_and_triples = circuit.num_and_gates();
        let mut and_shares = self
            .random_and_shares(num_and_triples, circuit.and_bucket_size())
            .unwrap();

        let mut garbled_ands = Vec::new();
        let mut local_ands = Vec::new();
        for (gate_index, gate) in circuit.gates.iter().enumerate() {
            match *gate {
                crate::circuit::WiredGate::Xor(left, right) => {
                    let share_left = self.wire_shares[left]
                        .clone()
                        .expect("should have shares for all earlier wires already");
                    let share_right = self.wire_shares[right]
                        .clone()
                        .expect("should have shares for all earlier wires already");

                    let xor_share = self.xor_abits(&share_left.0, &share_right.0);
                    if self.is_evaluator() {
                        self.wire_shares[gate_index] = Some((xor_share, None));
                    } else {
                        let WireLabel(left_label) = share_left
                            .1
                            .expect("should have labels for all earlier shares already");
                        let WireLabel(right_label) = share_right
                            .1
                            .expect("should have labels for all earlier shares already");
                        let xor_label = xor_mac_width(&left_label, &right_label);
                        self.wire_shares[gate_index] =
                            Some((xor_share, Some(WireLabel(xor_label))));
                    }
                }
                crate::circuit::WiredGate::And(left, right) => {
                    let share_left = self.wire_shares[left]
                        .clone()
                        .expect("should have shares for all earlier wires already");
                    let share_right = self.wire_shares[right]
                        .clone()
                        .expect("should have shares for all earlier wires already");

                    let random_and_triple = and_shares
                        .pop()
                        .expect("should have pre-computed enough AND triples");
                    let and_share =
                        self.and_abits(random_and_triple, &share_left.0, &share_right.0)?;

                    let and_output_share = self.wire_shares[gate_index]
                        .clone()
                        .expect("should have labels for all AND gate output wires");

                    let and_0 = self.xor_abits(&and_output_share.0, &and_share);
                    let and_1 = self.xor_abits(&and_0, &share_left.0);
                    let and_2 = self.xor_abits(&and_0, &share_right.0);
                    let mut and_3 = self.xor_abits(&and_1, &share_right.0);

                    if self.is_evaluator() {
                        // do local computation and receive values
                        and_3.bit.value ^= true;

                        for _j in 1..self.num_parties {
                            let garbled_and_message = self.channels.listen.recv().unwrap();
                            if let Message {
                                from,
                                to,
                                payload: MessagePayload::GarbledAnd(g0, g1, g2, g3),
                            } = garbled_and_message
                            {
                                debug_assert_eq!(to, self.id);
                                garbled_ands.push(GarbledAnd {
                                    sender: from,
                                    gate_index,
                                    g0,
                                    g1,
                                    g2,
                                    g3,
                                });
                            } else {
                                return Err(Error::UnexpectedMessage(garbled_and_message));
                            }
                        }

                        for j in (1..self.num_parties).rev() {
                            self.channels.parties[j]
                                .send(Message {
                                    from: self.id,
                                    to: j,
                                    payload: MessagePayload::Sync,
                                })
                                .unwrap();
                        }
                        local_ands.push((gate_index, 0, and_0));
                        local_ands.push((gate_index, 1, and_1));
                        local_ands.push((gate_index, 2, and_2));
                        local_ands.push((gate_index, 3, and_3));
                    } else {
                        // do local computation and send values
                        let evaluator_key = and_3
                            .mac_keys
                            .iter_mut()
                            .find(|key| key.bit_holder == EVALUATOR_ID)
                            .expect("should have key for evaluator");
                        evaluator_key.mac_key =
                            xor_mac_width(&evaluator_key.mac_key, &self.global_mac_key);

                        let WireLabel(left_label) = share_left
                            .1
                            .expect("should have labels for all earlier wires");
                        let WireLabel(right_label) = share_right
                            .1
                            .expect("should have labels for all earlier wires");
                        let left_inv_label = xor_mac_width(&left_label, &self.global_mac_key);
                        let right_inv_label = xor_mac_width(&right_label, &self.global_mac_key);

                        let WireLabel(output_label) = and_output_share.1.unwrap();
                        let garble_0 = self.garble_and(
                            gate_index,
                            0,
                            and_0,
                            output_label,
                            left_label,
                            right_label,
                        );
                        let garble_1 = self.garble_and(
                            gate_index,
                            1,
                            and_1,
                            output_label,
                            left_label,
                            right_inv_label,
                        );
                        let garble_2 = self.garble_and(
                            gate_index,
                            2,
                            and_2,
                            output_label,
                            left_inv_label,
                            right_label,
                        );
                        let garble_3 = self.garble_and(
                            gate_index,
                            3,
                            and_3,
                            output_label,
                            left_inv_label,
                            right_inv_label,
                        );

                        self.channels
                            .evaluator
                            .send(Message {
                                from: self.id,
                                to: EVALUATOR_ID,
                                payload: MessagePayload::GarbledAnd(
                                    garble_0, garble_1, garble_2, garble_3,
                                ),
                            })
                            .unwrap();

                        let sync = self.channels.listen.recv().unwrap();
                        match sync.payload {
                            MessagePayload::Sync => {
                                if sync.from != EVALUATOR_ID || sync.to != self.id {
                                    return Err(Error::UnexpectedMessage(sync));
                                }
                            }
                            _ => return Err(Error::UnexpectedMessage(sync)),
                        }
                    }
                }
                crate::circuit::WiredGate::Not(input) => {
                    let share_input = self.wire_shares[input]
                        .clone()
                        .expect("should have shares for all earlier wires already");

                    let inverted_share = self.invert_abit(&share_input.0);
                    if self.is_evaluator() {
                        self.wire_shares[gate_index] = Some((inverted_share, None));
                    } else {
                        let WireLabel(input_label) = share_input
                            .1
                            .expect("should have labels for all earlier shares already");

                        let inverted_label = xor_mac_width(&input_label, &self.global_mac_key);
                        self.wire_shares[gate_index] =
                            Some((inverted_share, Some(WireLabel(inverted_label))));
                    }
                }
                crate::circuit::WiredGate::Input(_) => continue,
            }
        }

        Ok((garbled_ands, local_ands))
    }

    /// Run the input-processing phase of the protocol.
    pub fn input_processing(
        &mut self,
        circuit: &Circuit,
        input_values: &[bool],
    ) -> Result<(Vec<(usize, bool)>, Vec<(usize, usize, [u8; 16])>), Error> {
        let mut masked_wire_values = Vec::new();
        let mut wire_labels = Vec::new();
        let mut input_wire_offset = 0;
        for (party, input_width) in circuit.input_widths.iter().enumerate() {
            for input_index in 0..*input_width {
                let input_wire_index = input_wire_offset + input_index;
                let wire_share = &self.wire_shares[input_wire_index]
                    .clone()
                    .expect("should have wire shares for all input wires");
                let mut masked_wire_value;
                if party == self.id {
                    let input_value = input_values[input_index];
                    // receive input wire shares from the other parties
                    let mut other_wire_mask_shares = Vec::new();
                    for j in 0..self.num_parties {
                        if j == self.id {
                            continue;
                        }

                        let mac_message = self.channels.listen.recv().unwrap();
                        if let Message {
                            from,
                            to,
                            payload: MessagePayload::WireMac(r_j, mac_j),
                        } = mac_message
                        {
                            debug_assert_eq!(to, self.id);
                            // verify mac
                            let my_key = wire_share
                                .0
                                .mac_keys
                                .iter()
                                .find(|key| key.bit_holder == from)
                                .expect("should have keys for all other parties");
                            if !verify_mac(&r_j, &mac_j, &my_key.mac_key, &self.global_mac_key) {
                                return Err(Error::CheckFailed(
                                    "invalid input wire MAC ".to_owned(),
                                ));
                            }
                            other_wire_mask_shares.push(r_j);
                        } else {
                            return Err(Error::UnexpectedMessage(mac_message));
                        }
                    }

                    // compute blinded input value
                    masked_wire_value = input_value ^ wire_share.0.bit.value;
                    for bit in other_wire_mask_shares {
                        masked_wire_value ^= bit;
                    }

                    // acknowledge received messages
                    for j in (0..self.num_parties).rev() {
                        if j == self.id {
                            continue;
                        }
                        self.channels.parties[j]
                            .send(Message {
                                from: self.id,
                                to: j,
                                payload: MessagePayload::Sync,
                            })
                            .unwrap();
                    }

                    // Broadcast masked wire. Don't care about other parties' values here.
                    self.broadcast(&vec![masked_wire_value as u8])?;
                } else {
                    // send input wire shares to the party
                    let their_mac = wire_share
                        .0
                        .macs
                        .iter()
                        .find(|(maccing_party, _)| *maccing_party == party)
                        .expect("should have macs from all other parties")
                        .1;
                    self.channels.parties[party]
                        .send(Message {
                            from: self.id,
                            to: party,
                            payload: MessagePayload::WireMac(wire_share.0.bit.value, their_mac),
                        })
                        .unwrap();

                    // receive acknowlegement
                    let sync_message = self.channels.listen.recv().unwrap();

                    if !(sync_message.from == party
                        && sync_message.to == self.id
                        && matches!(sync_message.payload, MessagePayload::Sync))
                    {
                        return Err(Error::UnexpectedMessage(sync_message));
                    }

                    // receive masked wire value broadcast
                    masked_wire_value = self
                        .broadcast(&[])?
                        .iter()
                        .find(|(sending_party, _)| *sending_party == party)
                        .expect("should have received broadcast from all other parties")
                        .1[0]
                        != 0;
                }

                masked_wire_values.push((input_wire_index, masked_wire_value));

                // Send correct wire label to evaluator.
                if self.is_evaluator() {
                    // listen for all wire labels
                    for _j in 0..self.num_parties - 1 {
                        let label_message = self.channels.listen.recv().unwrap();
                        if let Message {
                            from,
                            to,
                            payload: MessagePayload::WireLabel { wire, label },
                        } = label_message
                        {
                            debug_assert_eq!(to, self.id);
                            debug_assert_eq!(wire, input_wire_index);

                            wire_labels.push((from, wire, label));
                        } else {
                            return Err(Error::UnexpectedMessage(label_message));
                        }
                    }

                    // acknowledge received messages
                    for j in (0..self.num_parties).rev() {
                        if j == self.id {
                            continue;
                        }
                        self.channels.parties[j]
                            .send(Message {
                                from: self.id,
                                to: j,
                                payload: MessagePayload::Sync,
                            })
                            .unwrap();
                    }
                } else {
                    // send my wire label according to the received / computed wire_mask
                    let WireLabel(mut label) = wire_share
                        .clone()
                        .1
                        .expect("should have labels for all input wires");
                    if masked_wire_value {
                        label = xor_mac_width(&label, &self.global_mac_key)
                    }

                    self.channels
                        .evaluator
                        .send(Message {
                            from: self.id,
                            to: EVALUATOR_ID,
                            payload: MessagePayload::WireLabel {
                                wire: input_wire_index,
                                label,
                            },
                        })
                        .unwrap();

                    // listen for acknowledgement
                    let sync_message = self.channels.listen.recv().unwrap();

                    if !(sync_message.from == EVALUATOR_ID
                        && sync_message.to == self.id
                        && matches!(sync_message.payload, MessagePayload::Sync))
                    {
                        return Err(Error::UnexpectedMessage(sync_message));
                    }
                }
            }

            input_wire_offset += input_width;
        }

        Ok((masked_wire_values, wire_labels))
    }

    /// Run the circuit evaluation phase of the protocol.
    fn evaluate_circuit(
        &mut self,
        circuit: &Circuit,
        garbled_ands: Vec<GarbledAnd>,
        local_ands: Vec<(usize, u8, AuthBit)>,
        masked_input_wire_values: Vec<(usize, bool)>,
        input_wire_labels: Vec<(usize, usize, [u8; MAC_LENGTH])>,
    ) -> Result<(Vec<(usize, bool)>, Vec<(usize, usize, [u8; 16])>), Error> {
        let mut masked_wire_values = masked_input_wire_values;
        let mut wire_labels = input_wire_labels;
        for (gate_index, gate) in circuit.gates.iter().enumerate() {
            match *gate {
                crate::circuit::WiredGate::Input(_) => continue,
                crate::circuit::WiredGate::Xor(left, right) => {
                    let left_masked_value = masked_wire_values
                        .iter()
                        .find(|(wire_index, _)| *wire_index == left)
                        .expect("should have labels and mask for all earlier wires")
                        .1;
                    let right_masked_value = masked_wire_values
                        .iter()
                        .find(|(wire_index, _)| *wire_index == right)
                        .expect("should have labels and mask for all earlier wires")
                        .1;

                    let output_wire_mask = left_masked_value ^ right_masked_value;
                    masked_wire_values.push((gate_index, output_wire_mask));

                    for party in 1..self.num_parties {
                        let their_left_label = wire_labels
                            .iter()
                            .find(|(labeling_party, wire_index, _)| {
                                *labeling_party == party && *wire_index == left
                            })
                            .expect("should have labels from all parties for all earlier wires")
                            .2;
                        let their_right_label = wire_labels
                            .iter()
                            .find(|(labeling_party, wire_index, _)| {
                                *labeling_party == party && *wire_index == right
                            })
                            .expect("should have labels from all parties for all earlier wires")
                            .2;
                        let output_wire_label =
                            xor_mac_width(&their_left_label, &their_right_label);
                        wire_labels.push((party, gate_index, output_wire_label));
                    }
                }

                crate::circuit::WiredGate::And(left, right) => {
                    let output_wire_share = &self.wire_shares[gate_index]
                        .as_ref()
                        .expect("should have shares for all AND gates")
                        .0;
                    let left_masked_value = masked_wire_values
                        .iter()
                        .find(|(wire_index, _)| *wire_index == left)
                        .expect("should have labels and mask for all earlier wires")
                        .1;
                    let right_masked_value = masked_wire_values
                        .iter()
                        .find(|(wire_index, _)| *wire_index == right)
                        .expect("should have labels and mask for all earlier wires")
                        .1;

                    let mut masked_output_value = output_wire_share.bit.value;
                    let mut this_wires_labels = Vec::new();
                    for j in 1..self.num_parties {
                        let garble_index =
                            2 * (left_masked_value as u8) + (right_masked_value as u8);
                        // recover output wire shares and labels from garbled tables
                        let their_left_label = wire_labels
                            .iter()
                            .find(|(sender, gate_index, _)| *sender == j && *gate_index == left)
                            .expect("should have labels from all other parties")
                            .2;
                        let their_right_label = wire_labels
                            .iter()
                            .find(|(sender, gate_index, _)| *sender == j && *gate_index == right)
                            .expect("should have labels from all other parties")
                            .2;
                        let garbled_and_table = garbled_ands
                            .iter()
                            .find(|g| g.gate_index == gate_index && g.sender == j)
                            .expect("should habe garbled and from all parties for all and gates");
                        let garbled_and = match garble_index {
                            0 => &garbled_and_table.g0,
                            1 => &garbled_and_table.g1,
                            2 => &garbled_and_table.g2,
                            3 => &garbled_and_table.g3,
                            _ => panic!("Invalid garble index"),
                        };
                        let (r_j, macs, initial_output_label) = self.ungarble_and(
                            gate_index,
                            garble_index,
                            garbled_and,
                            their_left_label,
                            their_right_label,
                        )?;
                        // check my MAC on recovered share
                        let my_mac = macs[self.id];
                        let my_key = local_ands
                            .iter()
                            .find(|(gate, garble, _)| {
                                *gate == gate_index && *garble == garble_index
                            })
                            .expect("should have keys for all other parties' MACs")
                            .2
                            .mac_keys
                            .iter()
                            .find(|k| k.bit_holder == j)
                            .unwrap();
                        if !verify_mac(&r_j, &my_mac, &my_key.mac_key, &self.global_mac_key) {
                            return Err(Error::CheckFailed(
                                "AND gate evaluation: MAC check failed".to_owned(),
                            ));
                        }
                        masked_output_value ^= r_j;
                        let mut their_output_wire_label = initial_output_label;
                        for mac in macs {
                            their_output_wire_label = xor_mac_width(&their_output_wire_label, &mac);
                        }
                        this_wires_labels.push((j, their_output_wire_label));
                        wire_labels.push((j, gate_index, their_output_wire_label));
                    }

                    masked_wire_values.push((gate_index, masked_output_value));
                }

                crate::circuit::WiredGate::Not(before) => {
                    let before_masked_value = masked_wire_values
                        .iter()
                        .find(|(wire_index, _)| *wire_index == before)
                        .expect("should have labels and mask for all earlier wires")
                        .1;
                    let output_wire_mask = before_masked_value ^ true;
                    masked_wire_values.push((gate_index, output_wire_mask));
                    for j in 1..self.num_parties {
                        let their_label = wire_labels
                            .iter()
                            .find(|(sender, gate_index, _)| *sender == j && *gate_index == before)
                            .expect("should have labels for all earlier wires")
                            .2;
                        wire_labels.push((j, gate_index, their_label)); // XXX: Label stays the same here. OK?
                    }
                }
            }
        }
        Ok((masked_wire_values, wire_labels))
    }

    /// Run the output processing phase of the protocol
    pub fn output_processing(
        &mut self,
        circuit: &Circuit,
        masked_wire_values: Vec<(usize, bool)>,
    ) -> Result<Vec<(usize, bool)>, Error> {
        let mut output_values = Vec::new();
        // receive output wire mask shares
        for output_wire_index in circuit.output_gates.iter() {
            let output_wire_share = &self.wire_shares[*output_wire_index]
                .clone()
                .expect("should have wire shares for all input wires")
                .0;
            if self.is_evaluator() {
                let mut output_wire_value = masked_wire_values
                    .iter()
                    .find(|(wire_index, _)| *wire_index == *output_wire_index)
                    .expect("should have masked values for all output wires after evaluation")
                    .1;
                for _j in 0..self.num_parties - 1 {
                    let share_message = self.channels.listen.recv().unwrap();
                    if let Message {
                        from,
                        to,
                        payload: MessagePayload::WireMac(wire_mask_share, mac),
                    } = share_message
                    {
                        debug_assert_eq!(to, self.id);
                        // verify mac
                        let my_key = output_wire_share
                            .mac_keys
                            .iter()
                            .find(|key| key.bit_holder == from)
                            .expect("should have keys for all other parties");
                        if !verify_mac(
                            &wire_mask_share,
                            &mac,
                            &my_key.mac_key,
                            &self.global_mac_key,
                        ) {
                            return Err(Error::CheckFailed("invalid nput wire MAC ".to_owned()));
                        }
                        output_wire_value ^= wire_mask_share;
                    } else {
                        return Err(Error::UnexpectedMessage(share_message));
                    }
                }

                output_values.push((*output_wire_index, output_wire_value));

                // acknowledge received messages
                for j in (0..self.num_parties).rev() {
                    if j == self.id {
                        continue;
                    }
                    self.channels.parties[j]
                        .send(Message {
                            from: self.id,
                            to: j,
                            payload: MessagePayload::Sync,
                        })
                        .unwrap();
                }
            } else {
                // send output wire mask shares
                let evaluator_mac = output_wire_share.macs[EVALUATOR_ID].1;
                self.channels
                    .evaluator
                    .send(Message {
                        from: self.id,
                        to: EVALUATOR_ID,
                        payload: MessagePayload::WireMac(
                            output_wire_share.bit.value,
                            evaluator_mac,
                        ),
                    })
                    .unwrap();

                // listen for acknowledgement
                let sync_message = self.channels.listen.recv().unwrap();

                if !(sync_message.from == EVALUATOR_ID
                    && sync_message.to == self.id
                    && matches!(sync_message.payload, MessagePayload::Sync))
                {
                    return Err(Error::UnexpectedMessage(sync_message));
                }
            }
        }

        Ok(output_values)
    }

    /// Run the MPC protocol, returning the parties output, if any.
    pub fn run(
        &mut self,
        read_stored_triples: bool,
        circuit: &Circuit,
        input: &[bool],
    ) -> Result<Option<Vec<(usize, bool)>>, Error> {
        use std::io::Write;

        // Validate the circuit
        circuit
            .validate_circuit_specification()
            .map_err(Error::Circuit)
            .unwrap();

        if circuit.input_widths[self.id] != input.len() {
            panic!("Invalid input provided to party {}", self.id)
        }

        let num_auth_shares = circuit.share_authentication_cost() + SEC_MARGIN_SHARE_AUTH;

        if read_stored_triples {
            let file = std::fs::File::open(format!("{}.triples", self.id));
            if let Ok(f) = file {
                (self.global_mac_key, self.abit_pool) =
                    serde_json::from_reader(f).map_err(|_| Error::OtherError)?;

                let max_id = self
                    .abit_pool
                    .iter()
                    .max_by_key(|abit| abit.bit.id.0)
                    .map(|abit| abit.bit.id.0)
                    .unwrap_or(0);
                self.bit_counter = max_id;

                if num_auth_shares > self.abit_pool.len() {
                    self.log(&format!(
                        "Insufficient precomputation (by {})",
                        num_auth_shares - self.abit_pool.len()
                    ));
                    return Ok(None);
                }
            }
        } else {
            let target_number = circuit.share_authentication_cost();

            self.abit_pool = self.precompute_abits(target_number + SEC_MARGIN_SHARE_AUTH)?;

            let file = std::fs::File::create(format!("{}.triples", self.id))
                .map_err(|_| Error::OtherError)?;
            let mut writer = std::io::BufWriter::new(file);
            serde_json::to_writer(&mut writer, &(self.global_mac_key, &self.abit_pool))
                .map_err(|_| Error::OtherError)?;
            writer.flush().unwrap();
        }

        self.function_independent(circuit).unwrap();

        let (garbled_ands, local_ands) = self.function_dependent(circuit).unwrap();
        if self.is_evaluator() {
            debug_assert_eq!(
                garbled_ands.len(),
                circuit.num_and_gates() * (self.num_parties - 1)
            );
        }

        self.sync().unwrap();

        let (masked_input_wire_values, input_wire_labels) =
            self.input_processing(circuit, input).unwrap();

        self.sync().unwrap();
        let result = if self.is_evaluator() {
            let (masked_wire_values, _wire_labels) = self
                .evaluate_circuit(
                    circuit,
                    garbled_ands,
                    local_ands,
                    masked_input_wire_values,
                    input_wire_labels,
                )
                .unwrap();
            self.sync().unwrap();
            let result = self.output_processing(circuit, masked_wire_values).unwrap();

            self.log(&format!("Got result {result:?}"));
            result
        } else {
            self.sync().unwrap();
            let result = self
                .output_processing(circuit, masked_input_wire_values)
                .unwrap();

            result
        };

        Ok(if result.is_empty() {
            Some(result)
        } else {
            None
        })
    }

    /// Synchronise parties.
    ///
    /// In all other communication rounds, parties send in increasing order of
    /// their numeric identifiers. In order to prevent early parties from
    /// advancing to the next phase of the procotol before later parties have
    /// caught up, this synchronization mechanism reverses the turn order,
    /// making numerically smaller ID parties first wait for the synchronisation
    /// signal from numerically larger ID parties.
    ///
    /// For this to work as a synchronisation mechanism it is crucial that
    /// synchronisation is the only communication round with decreasing turn
    /// order.
    fn sync(&self) -> Result<(), Error> {
        for _i in (self.id + 1..self.num_parties).rev() {
            let sync_msg = self
                .channels
                .listen
                .recv()
                .expect("all parties should be online");
            if let MessagePayload::Sync = sync_msg.payload {
                continue;
            } else {
                return Err(Error::UnexpectedMessage(sync_msg));
            }
        }

        for i in (0..self.num_parties).rev() {
            if i == self.id {
                continue;
            }
            self.channels.parties[i]
                .send(Message {
                    from: self.id,
                    to: i,
                    payload: MessagePayload::Sync,
                })
                .expect("all parties should be online");
        }

        for _ in (0..self.id).rev() {
            let sync_msg = self
                .channels
                .listen
                .recv()
                .expect("all parties should be online");
            if let MessagePayload::Sync = sync_msg.payload {
                continue;
            } else {
                return Err(Error::UnexpectedMessage(sync_msg));
            }
        }

        Ok(())
    }

    /// Utility function to provide debug output during the protocol run.
    fn log(&mut self, message: &str) {
        if self.enable_logging {
            eprintln!("[Party {} @ {}]: {}", self.id, self.log_counter, message);
            self.log_counter += 1;
        }
    }

    /// Compute an entry in a garbled AND-gate evaluation table.
    fn garble_and(
        &self,
        gate_index: usize,
        garble_index: u8,
        and_share: AuthBit,
        output_label: [u8; 16],
        left_label: [u8; 16],
        right_label: [u8; 16],
    ) -> Vec<u8> {
        let garble_serialization: Vec<u8> = self.garbling_serialize(and_share, output_label);
        let blinding: Vec<u8> = compute_blinding(
            garble_serialization.len(),
            left_label,
            right_label,
            gate_index,
            garble_index,
        );
        let mut result = vec![0u8; garble_serialization.len()];
        for byte in 0..result.len() {
            result[byte] = garble_serialization[byte] ^ blinding[byte];
        }
        result
    }

    /// Ungarble an AND-gate evaluation table entry.
    fn ungarble_and(
        &self,
        gate_index: usize,
        garble_index: u8,
        garbled_and: &[u8],
        left_label: [u8; 16],
        right_label: [u8; 16],
    ) -> Result<(bool, Vec<[u8; MAC_LENGTH]>, [u8; MAC_LENGTH]), Error> {
        let blinding: Vec<u8> = compute_blinding(
            garbled_and.len(),
            left_label,
            right_label,
            gate_index,
            garble_index,
        );
        let mut result_bytes = vec![0u8; garbled_and.len()];
        for byte in 0..result_bytes.len() {
            result_bytes[byte] = garbled_and[byte] ^ blinding[byte];
        }

        let result = self.garbling_deserialize(&result_bytes)?;
        Ok(result)
    }

    /// Serialize an authenticated wire share for garbling AND gates.
    fn garbling_serialize(&self, and_share: AuthBit, output_label: [u8; 16]) -> Vec<u8> {
        let mut result = and_share.serialize_bit_macs();
        let mut garbled_label = output_label;
        for key in and_share.mac_keys {
            garbled_label = xor_mac_width(&garbled_label, &key.mac_key);
        }

        if and_share.bit.value {
            garbled_label = xor_mac_width(&garbled_label, &self.global_mac_key);
        }
        result.extend_from_slice(&garbled_label);
        result
    }

    /// Deserialize an authenticated wire share for garbled AND evaluation.
    fn garbling_deserialize(
        &self,
        serialization: &[u8],
    ) -> Result<(bool, Vec<[u8; 16]>, [u8; 16]), Error> {
        let (bit_mac_bytes, label) = serialization.split_at(1 + MAC_LENGTH * self.num_parties);
        let (bit_value, macs) = AuthBit::deserialize_bit_macs(bit_mac_bytes)?;
        Ok((bit_value, macs, label.try_into().unwrap()))
    }
}

fn compute_blinding(
    len: usize,
    left_label: [u8; 16],
    right_label: [u8; 16],
    gate_index: usize,
    garble_index: u8,
) -> Vec<u8> {
    let mut ikm = vec![garble_index];
    ikm.extend_from_slice(&left_label);
    ikm.extend_from_slice(&right_label);
    ikm.extend_from_slice(&gate_index.to_be_bytes());
    let domain_separator = "garble-blinding";
    let prekey = hkdf_extract(domain_separator.as_bytes(), &ikm);
    hkdf_expand(&prekey, b"", len)
}