1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
//! The [`Circuit`] representation used by the MPC engine.
//!
//! A circuit is made up of logic gates and value-carrying wires between the
//! gates. Each gate takes one or more wires as input, depending on the type of
//! gate, and has exactly one output wire.
//!
//! Conceptually, a circuit is a sequence of input or logic (XOR/AND/NOT) gates,
//! with all input gates at the beginning of the sequence, followed by all logic
//! gates. The index of a gate in the sequence determines its "wire index",
//! which is available as the input to any gate later in the sequence. For
//! example, in a circuit with two input gates (1 bit for party A, 1 bit for
//! party B), followed by three logic gates (an XOR of the two input gates, an
//! AND of the two input gates, and an XOR of these two XOR/AND gates), the
//! input gates would be the wires 0 and 1, the XOR of these two input gates
//! would be specified as `Gate::Xor(0, 1)` and have wire index 2, the AND of
//! the two input gates would be specified as `Gate::And(0, 1)` and have wire
//! index 3, and the XOR of the two logic gates would be specified as
//! `Gate::Xor(2, 3)` and have wire index 4:
//!
//! ```text
//! Input A (Wire 0) ----+----------+
//! | |
//! Input B (Wire 1) ----|-----+----|-----+
//! | | | |
//! +-XOR-+ | |
//! (Wire 2) =====> | | |
//! | +-AND-+
//! (Wire 3) =======|========> |
//! +---XOR----+
//! (Wire 4) ==========> |
//! ```
//!
//! The input gates of different parties cannot be interleaved: Each party must
//! supply all of their inputs before the next party's inputs can start.
//!
//! At least one input bit must be specified, and every party contributing
//! inputs to the circuit has to specify at least one input bit. Party input
//! gates may not refer to other input gates' wire indices.
//!
//! This module is derived from the circuit representation of
//! [`garble_lang`](https://github.com/sine-fdn/garble-lang/tree/main), the
//! license of which is reproduced below.
//!
//! > MIT License
//! >
//! > Copyright (c) 2022 SINE e.V.
//! >
//! > Permission is hereby granted, free of charge, to any person obtaining a
//! > copy of this software and associated documentation files (the "Software"),
//! > to deal in the Software without restriction, including without limitation
//! > the rights to use, copy, modify, merge, publish, distribute, sublicense,
//! > and/or sell copies of the Software, and to permit persons to whom the
//! > Software is furnished to do so, subject to the following conditions:
//! >
//! > The above copyright notice and this permission notice shall be included in
//! > all copies or substantial portions of the Software.
//! >
//! > THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//! > IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//! > FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
//! > THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//! > LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
//! > FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
//! > DEALINGS IN THE SOFTWARE.
//!
//!
use crate::STATISTICAL_SECURITY;
/// Data type to uniquely identify gate output wires.
pub type WireIndex = usize;
/// An input gate or a logic gate with its input wire specification.
#[derive(Debug, Clone)]
pub enum WiredGate {
/// An input wire, with its value coming directly from one of the parties.
/// Its [`WireIndex`] must refer to its own gate index.
Input(WireIndex),
/// A logical XOR gate attached to the two specified input wires. The
/// [`WireIndex`] of each input wire must refer to a lower index than the
/// gate's own index.
Xor(WireIndex, WireIndex),
/// A logical AND gate attached to the two specified input wires. The
/// [`WireIndex`] of each input wire must refer to a lower index than the
/// gate's own index.
And(WireIndex, WireIndex),
/// A logical NOT gate attached to the specified input wire. The
/// [`WireIndex`] of the input wire must refer to a lower index than the
/// gate's own index.
Not(WireIndex),
}
/// Specifies how many input bits a party is expected to contribute to the
/// evaluation.
pub type InputWidth = usize;
/// Representation of a circuit evaluated by an MPC engine.
#[derive(Debug, Clone)]
pub struct Circuit {
/// The bit-width of the inputs expected by the different parties,
/// [`InputWidth`] at index `i` representing the number of input bits for
/// party `i`.
pub input_widths: Vec<InputWidth>,
/// The circuit's gates.
pub gates: Vec<WiredGate>,
/// The indices of the gates in [`Circuit::gates`] that produce output bits.
pub output_gates: Vec<WireIndex>,
}
/// Errors occurring during the validation or the execution of the MPC protocol.
#[derive(Debug, PartialEq, Eq)]
pub enum CircuitError {
/// The provided party input does not match the number of input bits for
/// that party expected by the circuit.
PartyInputMismatch(usize, usize),
/// The provided set of inputs does not match the number of party inputs
/// expected by the circuit.
PartyCountMismatch(usize, usize),
/// The gate with the specified wire index contains invalid gate connections
/// or is placed out of sequence.
InvalidGate(usize),
/// The specified output gate does not exist in the circuit.
InvalidOutputWire(usize),
/// The circuit does not specify any output gates.
EmptyOutputSpecification,
/// The circuit does not specify input wires.
EmptyInputSpecification,
/// The circuit specifies a zero-width input.
InvalidInputSpecification,
}
impl std::fmt::Display for CircuitError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
CircuitError::PartyInputMismatch(expected_inputs, actual_inputs) => write!(
f,
"expected {} input bits for a party, but received {} input bits",
*expected_inputs, *actual_inputs
),
CircuitError::PartyCountMismatch(expected_parties, actual_parties) => write!(
f,
"expected inputs for {} parties, but received inputs for {} parties",
*expected_parties, *actual_parties
),
CircuitError::InvalidGate(gate_index) => write!(
f,
"found out of order placement or invalid wiring at gate index {}",
*gate_index
),
CircuitError::InvalidOutputWire(oob_index) => {
write!(f, "output index {} is out of bounds", *oob_index)
}
CircuitError::EmptyOutputSpecification => {
write!(f, "circuit does not specify output bits")
}
CircuitError::EmptyInputSpecification => {
write!(f, "circuit does not specify any party inputs")
}
CircuitError::InvalidInputSpecification => {
write!(f, "circuit specifies an empty party input")
}
}
}
}
impl Circuit {
/// Number of parties expected to contribute inputs to the circuit.
pub fn number_of_parties(&self) -> usize {
self.input_widths.len()
}
/// Check validity of circuit specification.
///
/// In particular:
/// * Validate input specification: Input width specification does not allow
/// 0-width inputs and at least one party must provide input bits.
/// * Validate gate sequence: All input gates must be at the beginning of
/// the gate sequence, followed only by logic gates.
/// * Validate gate wiring: A logic gate with index `i` can only take input
/// wires with strictly smaller indices. An input gate with index `i` must
/// refer to its own index as the input wire index.
/// * Validate output specification: The number of specified output wires
/// must be non-zero and all output wire indices must refer to valid wire
/// indices in the circuit, i.e. output wire indices must be smaller or
/// equal to the highest wire index used in the circuit.
pub fn validate_circuit_specification(&self) -> Result<(), CircuitError> {
// Check input validity.
if self.input_widths.is_empty() {
return Err(CircuitError::EmptyInputSpecification);
}
for input_width in &self.input_widths {
if *input_width == 0 {
return Err(CircuitError::InvalidInputSpecification);
}
}
// Check gate and gate sequence validity.
let mut total_input_width = 0;
for party_input_width in &self.input_widths {
total_input_width += party_input_width;
}
for (gate_index, gate) in self.gates.iter().enumerate() {
match *gate {
WiredGate::Input(x) => {
if x != gate_index || gate_index >= total_input_width {
return Err(CircuitError::InvalidGate(gate_index));
}
}
WiredGate::Xor(x, y) => {
if x >= gate_index || y >= gate_index || gate_index < total_input_width {
return Err(CircuitError::InvalidGate(gate_index));
}
}
WiredGate::And(x, y) => {
if x >= gate_index || y >= gate_index || gate_index < total_input_width {
return Err(CircuitError::InvalidGate(gate_index));
}
}
WiredGate::Not(x) => {
if x >= gate_index || gate_index < total_input_width {
return Err(CircuitError::InvalidGate(gate_index));
}
}
}
}
// Validate non-empty output specification.
if self.output_gates.is_empty() {
return Err(CircuitError::EmptyOutputSpecification);
}
// Validate output wire bounds.
for &output_wire in &self.output_gates {
if output_wire >= self.gates.len() {
return Err(CircuitError::InvalidOutputWire(output_wire));
}
}
Ok(())
}
/// Validate that a given set of party inputs corresponds to the circuit
/// specification.
///
/// In particular:
/// * Validate that the number of input vectors corresponds to the number of parties
/// expected to provide inputs.
/// * Validate, for each input vector, that the number of input bits matches the
/// corresponding parties' expected input width.
pub fn validate_input_vectors(&self, inputs: &[Vec<bool>]) -> Result<(), CircuitError> {
if self.number_of_parties() != inputs.len() {
return Err(CircuitError::PartyCountMismatch(
self.number_of_parties(),
inputs.len(),
));
}
for (party, &expected_input_gates) in self.input_widths.iter().enumerate() {
if expected_input_gates != inputs[party].len() {
return Err(CircuitError::PartyInputMismatch(
expected_input_gates,
inputs[party].len(),
));
}
}
Ok(())
}
/// Evaluates a circuit with the specified inputs (with one `Vec<bool>` per
/// party).
///
/// After validation of the circuit specification and validation of the
/// provided input vectors, the circuit is evaluated gate by gate:
///
/// * Input gates are evaluated as the identity function on the provided
/// input.
/// * Logic gates are evaluated by applying the given logical operation to
/// the wire values of the gates' input wires.
///
/// Circuit validation ensures that, during sequential evaluation, gate
/// input wires can only refer to previously evaluated gates, or values
/// provided in the circuit inputs in the case of input gate evaulation.
///
/// The circuit output is packed into a bitstring, with the indicated output
/// wire values appearing in sequential order.
pub fn eval(&self, inputs: &[Vec<bool>]) -> Result<Vec<bool>, CircuitError> {
self.validate_circuit_specification()?;
self.validate_input_vectors(inputs)?;
let mut wire_evaluations: Vec<bool> = inputs.iter().flat_map(|b| b.clone()).collect();
for gate in &self.gates {
let output_bit = match gate {
WiredGate::Input(x) => wire_evaluations[*x],
WiredGate::Xor(x, y) => wire_evaluations[*x] ^ wire_evaluations[*y],
WiredGate::And(x, y) => wire_evaluations[*x] & wire_evaluations[*y],
WiredGate::Not(x) => !wire_evaluations[*x],
};
wire_evaluations.push(output_bit);
}
let mut output_packed: Vec<bool> = Vec::with_capacity(self.output_gates.len());
for output_gate in &self.output_gates {
output_packed.push(wire_evaluations[*output_gate]);
}
Ok(output_packed)
}
/// Returns the number of gates (i.e. the size) of the circuit.
pub fn num_gates(&self) -> usize {
self.gates.len()
}
/// Computes the required bucket size for leaky AND triple combination.
pub fn and_bucket_size(&self) -> usize {
(STATISTICAL_SECURITY as u32 / self.num_gates().ilog2())
.try_into()
.unwrap()
}
/// Returns the number of AND gates in the circuit.
pub fn num_and_gates(&self) -> usize {
self.gates
.iter()
.filter(|gate| matches!(gate, WiredGate::And(_, _)))
.count()
}
/// Computes the total number of share authentications that will be necessary
/// to evaluate this circuit using the MPC protocol, excluding malicious security overhead.
pub fn share_authentication_cost(&self) -> usize {
let mut result: usize = 0;
for party_input_width in self.input_widths.iter() {
result += party_input_width;
}
let num_and_gates = self
.gates
.iter()
.filter(|gate| matches!(gate, WiredGate::And(_, _)))
.count();
result += num_and_gates;
result += num_and_gates * 3 * self.and_bucket_size();
result
}
}