1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//! The [`Circuit`] representation used by the MPC engine.
//!
//! A circuit is made up of logic gates and value-carrying wires between the
//! gates. Each gate takes one or more wires as input, depending on the type of
//! gate, and has exactly one output wire.
//!
//! Conceptually, a circuit is a sequence of input or logic (XOR/AND/NOT) gates,
//! with all input gates at the beginning of the sequence, followed by all logic
//! gates. The index of a gate in the sequence determines its "wire index",
//! which is available as the input to any gate later in the sequence. For
//! example, in a circuit with two input gates (1 bit for party A, 1 bit for
//! party B), followed by three logic gates (an XOR of the two input gates, an
//! AND of the two input gates, and an XOR of these two XOR/AND gates), the
//! input gates would be the wires 0 and 1, the XOR of these two input gates
//! would be specified as `Gate::Xor(0, 1)` and have wire index 2, the AND of
//! the two input gates would be specified as `Gate::And(0, 1)` and have wire
//! index 3, and the XOR of the two logic gates would be specified as
//! `Gate::Xor(2, 3)` and have wire index 4:
//!
//! ```text
//! Input A (Wire 0) ----+----------+
//!                      |          |
//! Input B (Wire 1) ----|-----+----|-----+
//!                      |     |    |     |
//!                      +-XOR-+    |     |
//!         (Wire 2) =====> |       |     |
//!                         |       +-AND-+
//!         (Wire 3) =======|========> |
//!                         +---XOR----+
//!         (Wire 4) ==========> |
//! ```
//!
//! The input gates of different parties cannot be interleaved: Each party must
//! supply all of their inputs before the next party's inputs can start.
//!
//! At least one input bit must be specified, and every party contributing
//! inputs to the circuit has to specify at least one input bit. Party input
//! gates may not refer to other input gates' wire indices.
//!
//! This module is derived from the circuit representation of
//! [`garble_lang`](https://github.com/sine-fdn/garble-lang/tree/main), the
//! license of which is reproduced below.
//!
//! > MIT License
//! >
//! > Copyright (c) 2022 SINE e.V.
//! >
//! > Permission is hereby granted, free of charge, to any person obtaining a
//! > copy of this software and associated documentation files (the "Software"),
//! > to deal in the Software without restriction, including without limitation
//! > the rights to use, copy, modify, merge, publish, distribute, sublicense,
//! > and/or sell copies of the Software, and to permit persons to whom the
//! > Software is furnished to do so, subject to the following conditions:
//! >
//! > The above copyright notice and this permission notice shall be included in
//! > all copies or substantial portions of the Software.
//! >
//! > THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//! > IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//! > FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
//! > THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//! > LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
//! > FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
//! > DEALINGS IN THE SOFTWARE.
//!
//!

use crate::STATISTICAL_SECURITY;

/// Data type to uniquely identify gate output wires.
pub type WireIndex = usize;

/// An input gate or a logic gate with its input wire specification.
#[derive(Debug, Clone)]
pub enum WiredGate {
    /// An input wire, with its value coming directly from one of the parties.
    /// Its [`WireIndex`] must refer to its own gate index.
    Input(WireIndex),
    /// A logical XOR gate attached to the two specified input wires. The
    /// [`WireIndex`] of each input wire must refer to a lower index than the
    /// gate's own index.
    Xor(WireIndex, WireIndex),
    /// A logical AND gate attached to the two specified input wires. The
    /// [`WireIndex`] of each input wire must refer to a lower index than the
    /// gate's own index.
    And(WireIndex, WireIndex),
    /// A logical NOT gate attached to the specified input wire. The
    /// [`WireIndex`] of the input wire must refer to a lower index than the
    /// gate's own index.
    Not(WireIndex),
}

/// Specifies how many input bits a party is expected to contribute to the
/// evaluation.
pub type InputWidth = usize;
/// Representation of a circuit evaluated by an MPC engine.
#[derive(Debug, Clone)]
pub struct Circuit {
    /// The bit-width of the inputs expected by the different parties,
    /// [`InputWidth`] at index `i` representing the number of input bits for
    /// party `i`.
    pub input_widths: Vec<InputWidth>,
    /// The circuit's gates.
    pub gates: Vec<WiredGate>,
    /// The indices of the gates in [`Circuit::gates`] that produce output bits.
    pub output_gates: Vec<WireIndex>,
}

/// Errors occurring during the validation or the execution of the MPC protocol.
#[derive(Debug, PartialEq, Eq)]
pub enum CircuitError {
    /// The provided party input does not match the number of input bits for
    /// that party expected by the circuit.
    PartyInputMismatch(usize, usize),
    /// The provided set of inputs does not match the number of party inputs
    /// expected by the circuit.
    PartyCountMismatch(usize, usize),
    /// The gate with the specified wire index contains invalid gate connections
    /// or is placed out of sequence.
    InvalidGate(usize),
    /// The specified output gate does not exist in the circuit.
    InvalidOutputWire(usize),
    /// The circuit does not specify any output gates.
    EmptyOutputSpecification,
    /// The circuit does not specify input wires.
    EmptyInputSpecification,
    /// The circuit specifies a zero-width input.
    InvalidInputSpecification,
}

impl std::fmt::Display for CircuitError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            CircuitError::PartyInputMismatch(expected_inputs, actual_inputs) => write!(
                f,
                "expected {} input bits for a party, but received {} input bits",
                *expected_inputs, *actual_inputs
            ),
            CircuitError::PartyCountMismatch(expected_parties, actual_parties) => write!(
                f,
                "expected inputs for {} parties, but received inputs for {} parties",
                *expected_parties, *actual_parties
            ),
            CircuitError::InvalidGate(gate_index) => write!(
                f,
                "found out of order placement or invalid wiring at gate index {}",
                *gate_index
            ),
            CircuitError::InvalidOutputWire(oob_index) => {
                write!(f, "output index {} is out of bounds", *oob_index)
            }
            CircuitError::EmptyOutputSpecification => {
                write!(f, "circuit does not specify output bits")
            }
            CircuitError::EmptyInputSpecification => {
                write!(f, "circuit does not specify any party inputs")
            }
            CircuitError::InvalidInputSpecification => {
                write!(f, "circuit specifies an empty party input")
            }
        }
    }
}

impl Circuit {
    /// Number of parties expected to contribute inputs to the circuit.
    pub fn number_of_parties(&self) -> usize {
        self.input_widths.len()
    }

    /// Check validity of circuit specification.
    ///
    /// In particular:
    /// * Validate input specification: Input width specification does not allow
    ///   0-width inputs and at least one party must provide input bits.
    /// * Validate gate sequence: All input gates must be at the beginning of
    ///   the gate sequence, followed only by logic gates.
    /// * Validate gate wiring: A logic gate with index `i` can only take input
    ///   wires with strictly smaller indices. An input gate with index `i` must
    ///   refer to its own index as the input wire index.
    /// * Validate output specification: The number of specified output wires
    ///  must be non-zero and all output wire indices must refer to valid wire
    ///  indices in the circuit, i.e. output wire indices must be smaller or
    ///  equal to the highest wire index used in the circuit.
    pub fn validate_circuit_specification(&self) -> Result<(), CircuitError> {
        // Check input validity.
        if self.input_widths.is_empty() {
            return Err(CircuitError::EmptyInputSpecification);
        }
        for input_width in &self.input_widths {
            if *input_width == 0 {
                return Err(CircuitError::InvalidInputSpecification);
            }
        }

        // Check gate and gate sequence validity.
        let mut total_input_width = 0;
        for party_input_width in &self.input_widths {
            total_input_width += party_input_width;
        }

        for (gate_index, gate) in self.gates.iter().enumerate() {
            match *gate {
                WiredGate::Input(x) => {
                    if x != gate_index || gate_index >= total_input_width {
                        return Err(CircuitError::InvalidGate(gate_index));
                    }
                }
                WiredGate::Xor(x, y) => {
                    if x >= gate_index || y >= gate_index || gate_index < total_input_width {
                        return Err(CircuitError::InvalidGate(gate_index));
                    }
                }
                WiredGate::And(x, y) => {
                    if x >= gate_index || y >= gate_index || gate_index < total_input_width {
                        return Err(CircuitError::InvalidGate(gate_index));
                    }
                }
                WiredGate::Not(x) => {
                    if x >= gate_index || gate_index < total_input_width {
                        return Err(CircuitError::InvalidGate(gate_index));
                    }
                }
            }
        }

        // Validate non-empty output specification.
        if self.output_gates.is_empty() {
            return Err(CircuitError::EmptyOutputSpecification);
        }

        // Validate output wire bounds.
        for &output_wire in &self.output_gates {
            if output_wire >= self.gates.len() {
                return Err(CircuitError::InvalidOutputWire(output_wire));
            }
        }

        Ok(())
    }

    /// Validate that a given set of party inputs corresponds to the circuit
    /// specification.
    ///
    /// In particular:
    /// * Validate that the number of input vectors corresponds to the number of parties
    ///   expected to provide inputs.
    /// * Validate, for each input vector, that the number of input bits matches the
    ///   corresponding parties' expected input width.
    pub fn validate_input_vectors(&self, inputs: &[Vec<bool>]) -> Result<(), CircuitError> {
        if self.number_of_parties() != inputs.len() {
            return Err(CircuitError::PartyCountMismatch(
                self.number_of_parties(),
                inputs.len(),
            ));
        }

        for (party, &expected_input_gates) in self.input_widths.iter().enumerate() {
            if expected_input_gates != inputs[party].len() {
                return Err(CircuitError::PartyInputMismatch(
                    expected_input_gates,
                    inputs[party].len(),
                ));
            }
        }

        Ok(())
    }

    /// Evaluates a circuit with the specified inputs (with one `Vec<bool>` per
    /// party).
    ///
    /// After validation of the circuit specification and validation of the
    /// provided input vectors, the circuit is evaluated gate by gate:
    ///
    /// * Input gates are evaluated as the identity function on the provided
    ///   input.
    /// * Logic gates are evaluated by applying the given logical operation to
    ///   the wire values of the gates' input wires.
    ///
    /// Circuit validation ensures that, during sequential evaluation, gate
    /// input wires can only refer to previously evaluated gates, or values
    /// provided in the circuit inputs in the case of input gate evaulation.
    ///
    /// The circuit output is packed into a bitstring, with the indicated output
    /// wire values appearing in sequential order.
    pub fn eval(&self, inputs: &[Vec<bool>]) -> Result<Vec<bool>, CircuitError> {
        self.validate_circuit_specification()?;
        self.validate_input_vectors(inputs)?;

        let mut wire_evaluations: Vec<bool> = inputs.iter().flat_map(|b| b.clone()).collect();

        for gate in &self.gates {
            let output_bit = match gate {
                WiredGate::Input(x) => wire_evaluations[*x],
                WiredGate::Xor(x, y) => wire_evaluations[*x] ^ wire_evaluations[*y],
                WiredGate::And(x, y) => wire_evaluations[*x] & wire_evaluations[*y],
                WiredGate::Not(x) => !wire_evaluations[*x],
            };
            wire_evaluations.push(output_bit);
        }

        let mut output_packed: Vec<bool> = Vec::with_capacity(self.output_gates.len());
        for output_gate in &self.output_gates {
            output_packed.push(wire_evaluations[*output_gate]);
        }
        Ok(output_packed)
    }

    /// Returns the number of gates (i.e. the size) of the circuit.
    pub fn num_gates(&self) -> usize {
        self.gates.len()
    }

    /// Computes the required bucket size for leaky AND triple combination.
    pub fn and_bucket_size(&self) -> usize {
        (STATISTICAL_SECURITY as u32 / self.num_gates().ilog2())
            .try_into()
            .unwrap()
    }

    /// Returns the number of AND gates in the circuit.
    pub fn num_and_gates(&self) -> usize {
        self.gates
            .iter()
            .filter(|gate| matches!(gate, WiredGate::And(_, _)))
            .count()
    }
    /// Computes the total number of share authentications that will be necessary
    /// to evaluate this circuit using the MPC protocol, excluding malicious security overhead.
    pub fn share_authentication_cost(&self) -> usize {
        let mut result: usize = 0;

        for party_input_width in self.input_widths.iter() {
            result += party_input_width;
        }

        let num_and_gates = self
            .gates
            .iter()
            .filter(|gate| matches!(gate, WiredGate::And(_, _)))
            .count();

        result += num_and_gates;
        result += num_and_gates * 3 * self.and_bucket_size();

        result
    }
}